神经网络是怎样理解图片的?谷歌大脑研究员详解特征可视化

简介:
本文来自AI新媒体量子位(QbitAI)

我们总是听说人工智能在图像识别上超越了人类,刷脸也逐渐成了生活中司空见惯的事儿。这些图像识别技术背后,通常是深度神经网络。

不过,神经网络究竟是怎样认识图像的?

39c489894b498bbbdadd9e398251e7ab54c7a50d

 特征可视化能够告诉我们神经网络在图片中寻找的是什么

特征可视化这个强大的工具,就能帮我们理解神经网络内部的世界,知道它们的工作原理。

谷歌研究员Christopher Olah、Alexander Mordvintsev和Ludwig Schubert今天在distill博客上发文深度探索了特征可视化这个问题,并顺便介绍了一些新trick。

distill.pub是Olah等人今年3月推出的机器学习网站,会不定期发表文章,以可视化、可交互的方式来展示机器学习研究成果。

原文地址:https://distill.pub/2017/feature-visualization/。其中包含大量可交互的示例图片。

下面,量子位对这篇文章做个简要的介绍:

在2015年谷歌推出的DeepDream基础上,经过AI研究界后来的共同努力,现在,计算机视觉模型中每一层所检测的东西都可以可视化出来。经过在一层层神经网络中的传递,会逐渐对图片进行抽象:先探测边缘,然后用这些边缘来检测纹理,再用纹理检测模式,用模式检测物体的部分……

d7145c307950e158ab38f19245daf94d7c83d41b

上面是ImageNet训练的GoogLeNet的特征可视化图,我们可以从中看出它的每一层是如何对图片进行抽象的。

在神经网络处理图像的过程中,单个的神经元是不能理解任何东西的,它们需要协作。所以,我们也需要理解它们彼此之间如何交互。

通过在神经元之间插值,我们可以更好地理解他们是如何彼此交互的。下图就展示了两个神经元是如何共同表示图像的。

851a50ec5942f9bd2bd85feaa6a78fe7c4798f13

Distill原文中的这个例子,能够动手探索不同神经元组合在一起会得到什么结果。

当然,这篇文章还介绍了一些特征可视化的trick。

在进行特征可视化时,得到的结果通常会布满噪点和无意义的高频图案。这些高频图案似乎和strided convolution或者池化关系密切。

2a48644c8edefccd2db179588c5d8436d6cb7773

 反向传播时,每次strided convolution或池化都会在梯度幅值上创建棋盘格图案

我们想更好地理解神经网络模型是如何工作的,就要避开这些高频图案。这时所用的方法是进行预先规则化,或者说约束。改变梯度也是一种方法,这种优化方法称为预处理(preconditioning)。

当然,了解神经网络内部的工作原理,也是增强人工智能可解释性的一种途径,而特征可视化正是其中一个很有潜力的研究方向,谷歌的几位研究员将其视为帮人类理解神经网络的一个基础模块,可以与其他工具结合使用。

推荐对此感兴趣的读者去阅读:

distill原文:
https://distill.pub/2017/feature-visualization/

GoogLeNet所有通道的可视化:
https://distill.pub/2017/feature-visualization/appendix/

本文作者:夏乙 
原文发布时间:2017-11-08
相关文章
|
25天前
|
编解码 异构计算
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
70 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
1天前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
62 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
5月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
97 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
26天前
|
计算机视觉 Perl
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
48 10
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
26天前
|
机器学习/深度学习 编解码 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
52 10
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
|
27天前
|
编解码 异构计算
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
107 7
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
3月前
|
机器学习/深度学习 网络架构
揭示Transformer重要缺陷!北大提出傅里叶分析神经网络FAN,填补周期性特征建模缺陷
近年来,神经网络在MLP和Transformer等模型上取得显著进展,但在处理周期性特征时存在缺陷。北京大学提出傅里叶分析网络(FAN),基于傅里叶分析建模周期性现象。FAN具有更少的参数、更好的周期性建模能力和广泛的应用范围,在符号公式表示、时间序列预测和语言建模等任务中表现出色。实验表明,FAN能更好地理解周期性特征,超越现有模型。论文链接:https://arxiv.org/pdf/2410.02675.pdf
140 68
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
揭示Transformer周期建模缺陷!北大提出新型神经网络FAN,填补周期性特征建模能力缺陷
北京大学研究团队发现,Transformer等主流神经网络在周期特征建模方面存在缺陷,如记忆数据模式而非理解内在规律,导致泛化能力受限。为此,团队提出基于傅里叶分析的Fourier Analysis Network(FAN),通过显式建模周期性特征,提升模型的理解和预测能力,减少参数和计算量,并在多个实验中验证其优越性。论文链接:https://arxiv.org/pdf/2410.02675.pdf
26 3
|
1月前
|
计算机视觉 Perl
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
38 0
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
1月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
71 0
YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合

热门文章

最新文章