【数据挖掘实战】——家用电器用户行为分析及事件识别(BP神经网络)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 项目地址:Datamining_project: 数据挖掘实战项目代码

一、背景和挖掘目标


1、问题背景

  • 智能家居是利用先进的技术,融合个性需求,将与家居生活有关的各个子系统有机地结合在一起,通过网络化综合智能控制和管理,实现“以人为本”的全新生活体验。
  • 企业若能深入了解其产品在不同用户群的使用习惯,开发新功能,就能开拓新市场,实现产品的智能化。根据家居的智能化,分析客户行为,识别不同客户群的特征、加深对客户的理解等。(以热水器为例,分析客户行为)
  • 针对不同的客户群提供个性化产品、改进新产品的智能化的研发和制定相应的营销策略。


2、原始数据

用户用水数据表:包括了洗浴、洗手、洗脸、洗菜、做饭等用水行为

c46ed6d1eaa64a60a8229d351eb627d3.png3、挖掘目标

  • 根据热水器采集到的数据,划分一次完整用水事件;
  • 在划分好的一次完整用水事件中,识别出洗浴事件。


二、分析方法与过程


1、初步分析

  • 热水器在状态发生改变或者有水流状态时,每2秒会采集一条流水数据。因为用户行为不仅仅只有洗浴还存在其他的用水事件:比如洗手、洗菜等,所以热水器采集的数据来自各种不同的用水事件。
  • 基于热水器采集的数据,根据水流量和停顿时间间隔划分为不同大小的时间区间,每个区间是一个可理解的一次完整用水事件,并以热水器一次完整用水事件作为一个基本事件。
  • 从独立的用水事件中识别出其中属于洗浴的事件。


2、总体流程

f380a5c910b84550afcde5834df1e9d8.png

第一步:数据抽取

采用无放回随机抽样法抽取200家热水器用户,从2014年1月1日至2014年12月31日的用水记录作为原始建模数据。

属性名称 属性说明
热水器编码 热水器出厂编号
发生时间 记录热水器处于某状态的时刻
开关机状态 热水器是否开机
即热 即时加热
加热中 热水器处于对水进行加热的状态
保温中 热水器处于对水进行保温的状态
有无水流 热水水流量大于等于10L/min为有水,否则为无
实际温度 热水器中热水的实际温度
热水量 热水器热水的含量
水流量 热水器热水的水流速度  单位:L/min
节能模式

热水器的一种节能工作模式

预约洗 预约一个时间使用热水
即时洗 不预约直接使用热水器
加热剩余时间 加热到设定温度还需多长时间
当前设置温度 热水器加热时热水能够到达的最大温度

第二步:探索分析

为了探究用户真实用水停顿时间间隔的分布情况,统计用水停顿的时间间隔并作频率分布直方图。

image.png

停顿时间间隔为0~0.3分钟的频率很高,根据日常用水经验可以判断其为一次用水时间中的停顿;停顿时间间隔为6~13分钟的频率较低,分析其为两次用水事件之间的停顿间隔。两次用水事件的停顿时间间隔分布在3~7分钟与现场实验统计用水停顿的时间间隔近似。

第三步:数据的预处理

1、数据规约

属性规约:因“热水器编号”、“即热”、“即时洗” 、“有无水流” 、“预约洗”、 “节能模式”对建模无作用,可以去除。

数值规约:当热水器“开关机状态”为“关”且水流量为0时,说明热水器不处于工作状态,数据记录可以规约掉。

2、数据变换


一次完整用水事件的划分:用水状态记录中,水流量不为0表明用户正在使用热水;而水流量为0时用户用热水发生停顿或者用热水结束。水流量为0的状态记录之间的时间间隔如果超过一个阈值T,则从该段水流量为0的状态记录向前找到最后一条水流量不为0的用水记录作为上一次用水事件的结束;向后找到水流量不为0的状态记录作为下一个用水事件的开始。


///

af83ad626488464cb5e3e08567648f71.png

#-*-coding: utf-8-*-#用水事件划分importpandasaspdthreshold=pd.Timedelta('4 min') #阈值为分钟inputfile='data/water_heater.xls'#输入数据路径,需要使用Excel格式outputfile='tmp/dividsequence.xls'#输出数据路径,需要使用Excel格式data=pd.read_excel(inputfile)
data[u'发生时间'] =pd.to_datetime(data[u'发生时间'], format='%Y%m%d%H%M%S')
data=data[data[u'水流量'] >0] #只要流量大于0的记录d=data[u'发生时间'].diff() >threshold#相邻时间作差分,比较是否大于阈值data[u'事件编号'] =d.cumsum() +1#通过累积求和的方式为事件编号data.to_excel(outputfile)

用水事件阈值寻优:根据水流量和停顿时间间隔的阈值划分一次完整的用水事件。

7150b1c5d0b745b383be8a2816dd3837.png

#-*-coding: utf-8-*-#阈值寻优importnumpyasnpimportpandasaspdinputfile='data/water_heater.xls'#输入数据路径,需要使用Excel格式n=4#使用以后四个点的平均斜率threshold=pd.Timedelta(minutes=5)  #专家阈值data=pd.read_excel(inputfile)
data[u'发生时间'] =pd.to_datetime(data[u'发生时间'], format='%Y%m%d%H%M%S')
data=data[data[u'水流量'] >0]  #只要流量大于0的记录defevent_num(ts):
d=data[u'发生时间'].diff() >ts#相邻时间作差分,比较是否大于阈值returnd.sum() +1#这样直接返回事件数dt= [pd.Timedelta(minutes=i) foriinnp.arange(1, 9, 0.25)]
h=pd.DataFrame(dt, columns=[u'阈值'])  #定义阈值列h[u'事件数'] =h[u'阈值'].apply(event_num)  #计算每个阈值对应的事件数h[u'斜率'] =h[u'事件数'].diff() /0.25#计算每两个相邻点对应的斜率#df_test['col_name'].rolling(ma).mean()新版本---->pd.rolling_mean(df_test['col_name'], ma) 旧版本#pd.rolling_mean(h[u'斜率'].abs(), n)
h[u'斜率指标'] =h[u'斜率'].rolling(n).mean()  #采用后n个的斜率绝对值平均作为斜率指标ts=h[u'阈值'][h[u'斜率指标'].idxmin() -n]
#注:用idxmin返回最小值的Index,由于rolling_mean()自动计算的是前n个斜率的绝对值平均#所以结果要进行平移(-n)ifts>threshold:
ts=pd.Timedelta(minutes=4)
print(ts)

 属性构造:根据用水行为,需构造四类指标:时长指标、频率指标、用水的量化指标以及用水的波动指标。

3add54fe9293413b926b0e8bcbfc6cae.png

属性解释:

ec41aeecf2b94c31a0c3bdc9d728801d.png

候选洗浴事件:从大量的一次完整用水事件中筛选规则剔除可以明显判定不是洗浴的事件

筛选掉非常短暂的用水事件:一次完整的用水事件满足其中任意一个条件,就被判定为短暂用水事件,其筛选条件为:1、一次用水事件中总用水量(纯热水)小于y升;2、用水时长小于100秒;3、总用水时长小于120秒。


3、缺失值的处理

因存在网络故障等原因,导致用水数据状态记录缺失的情况,需要对缺失的数据状态记录进行添加。其添加方法:用水状态记录缺失的情况下,填充一条状态记录使水流量为0,发生时间加2秒,其余属性状态不变。


/

da7defa5727e47e6bd20ff6d93511547.png

第四步:构建专家样本

d3b50830f6ca4402930ecf36a4e72e4c.png

第五步:构建用水事件行为识别模型

1、洗浴识别模型

根据建模样本数据和用户记录的包含用水的用途、用水开始时间、用水结束时间等属性的用水日志,建立BP神经网络模型识别洗浴事件。

ebf115dfea394a6eaf27c002eb7f09c7.png

#-*-coding: utf-8-*-#建立、训练多层神经网络,并完成模型的检验from__future__importprint_functionimportpandasaspdinputfile1='../data/train_neural_network_data.xls'#训练数据inputfile2='../data/test_neural_network_data.xls'#测试数据testoutputfile='../tmp/test_output_data.xls'#测试数据模型输出文件data_train=pd.read_excel(inputfile1)  #读入训练数据(由日志标记事件是否为洗浴)
data_test=pd.read_excel(inputfile2)  #读入测试数据(由日志标记事件是否为洗浴)
y_train=data_train.iloc[:, 4].as_matrix()  #训练样本标签列x_train=data_train.iloc[:, 5:17].as_matrix()  #训练样本特征y_test=data_test.iloc[:, 4].as_matrix()  #测试样本标签列x_test=data_test.iloc[:, 5:17].as_matrix()  #测试样本特征fromkeras.modelsimportSequentialfromkeras.layers.coreimportDense, Dropout, Activationmodel=Sequential()  #建立模型model.add(Dense(11, 17))  #添加输入层、隐藏层的连接model.add(Activation('relu'))  #以Relu函数为激活函数model.add(Dense(17, 10))  #添加隐藏层、隐藏层的连接model.add(Activation('relu'))  #以Relu函数为激活函数model.add(Dense(10, 1))  #添加隐藏层、输出层的连接model.add(Activation('sigmoid'))  #以sigmoid函数为激活函数#编译模型,损失函数为binary_crossentropy,用adam法求解model.compile(loss='binary_crossentropy', optimizer='adam', class_mode="binary")
model.fit(x_train, y_train, nb_epoch=100, batch_size=1)  #训练模型model.save_weights('../tmp/net.model')  #保存模型参数r=pd.DataFrame(model.predict_classes(x_test), columns=[u'预测结果'])
pd.concat([data_test.iloc[:, :5], r], axis=1).to_excel(testoutputfile)
model.predict(x_test)

2、模型检验

通过某热水器用户记录了两周的热水器用水日志,将前一周的数据作为训练数据,后一周的数据作为测试数据。根据该热水器用户提供的用水日志与多层神经网络模型识别结果的比较,总共21条检测数据,准确识别了18条数据,模型对洗浴事件的识别准确率为85.5%。

fae1670dc325453a88c0f44aacc5932c.png


三、总结和思考


根据上述模型划分的结果,发现有时候会将两次(或多次)洗浴划分为一次洗浴,因为在实际情况中,存在着一个人洗完澡后,另一个人马上洗的情况,这中间过渡期间的停顿间隔小于阈值。针对两次(或多次)洗浴事件被合并为一次洗浴事件的情况,需要进行优化,对连续洗浴事件作识别,提高模型识别精确度。

判断连续洗浴的方法:对每次用水事件,建立一个连续洗判别指标。连续洗判别指标初始值为0,每当有一个属性超过设定的阈值,就给该指标加上相应的值,最后判别连续洗指标是否超过给定的阈值,如果超过给定的阈值,认为该次用水事件为连续洗事件。

————————————————

版权声明:本文为CSDN博主「Lingxw_w」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/lxwssjszsdnr_/article/details/129206418

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
2月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
139 6
|
24天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
163 80
|
8天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
18天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
1月前
|
存储 安全 网络安全
网络安全的盾与剑:漏洞防御与加密技术的实战应用
在数字化浪潮中,网络安全成为保护信息资产的重中之重。本文将深入探讨网络安全的两个关键领域——安全漏洞的防御策略和加密技术的应用,通过具体案例分析常见的安全威胁,并提供实用的防护措施。同时,我们将展示如何利用Python编程语言实现简单的加密算法,增强读者的安全意识和技术能力。文章旨在为非专业读者提供一扇了解网络安全复杂世界的窗口,以及为专业人士提供可立即投入使用的技术参考。
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
151 7
|
2月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
2月前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
56 0