【Hadoop Summit Tokyo 2016】将HDFS演化成为广义存储子系统

简介: 本讲义出自Sanjay Radia在Hadoop Summit Tokyo 2016上的演讲,主要介绍了HDFS的相关知识以及HDFS的过去以及未来发展的动机,分享了HDFS的优势所在以及面对的主要挑战,并分享了弹性的HDFS以及泛化存储层的存储容器。

本讲义出自Sanjay Radia在Hadoop Summit Tokyo 2016上的演讲,主要介绍了HDFS的相关知识以及HDFS的过去以及未来发展的动机,分享了HDFS的优势所在以及面对的主要挑战,并分享了弹性的HDFS以及泛化存储层的存储容器。

ee45d569e75932b5b570835f4ff06faa40def85d

8a207eba3e44e4960a9a29a7286fe3881a5c7e8b

e685bb0246e6ec2d5806b8d11f2c6cba9be4d769

7c4bd92bdfb969144257ed3c71345e412f255ddd

e74d73079e4ccb4d15ea3d3759b2bbf888ed0979

91d96711fc61d1abd3d105154a8c891ceaa3f6dd

cba86c41588c937541410f94b8cff47bdab0c5e6

78e22169106d61fc902581df0069feeac6a8d32b

3bb112f2b8a90f1771aab0f29e6e467da6ea0304

5a37a84f3693803526d08302204b049e8c336937

06ff5899099a55a59916083d2f08b5a1ab7bf30f

06e06b2073d1368dcf98ebfb643358714588dce2

61c4ae49e8f28426e6ea3980236187b3de2fb99c

6fc198914eff3451da6e843d7c9b9bfedaefda6f

dc463dec44f4fddc00e284efb128687714e493b1

ae3fb5672ebe49741e9b820bb0242be2ec0f6c64

5efb8bb16f4689e3603d3f87312ff1e1d156259a

f737f272610b4dd758dab87ae596c60acd6ed6c7

8658de8ce2046e93eb4052634703d3b8a4795ea7

857ea442b4dd71fb559e24b7543cd53473f25fe9

fde8b9f158460beb76a7b82e26164d6e4e251451

48ba6472d354e2a238054d907a7efa0d33e2c010



相关文章
|
2月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
256 70
|
7月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
344 6
|
4月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
137 7
|
7月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
214 0
|
7月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
93 0
|
7月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
135 0
|
2月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
188 79
|
7月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
154 2
|
5月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
209 4
|
6月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
317 2

相关实验场景

更多