【Hadoop Summit Tokyo 2016】将HDFS演化成为广义存储子系统

简介: 本讲义出自Sanjay Radia在Hadoop Summit Tokyo 2016上的演讲,主要介绍了HDFS的相关知识以及HDFS的过去以及未来发展的动机,分享了HDFS的优势所在以及面对的主要挑战,并分享了弹性的HDFS以及泛化存储层的存储容器。

本讲义出自Sanjay Radia在Hadoop Summit Tokyo 2016上的演讲,主要介绍了HDFS的相关知识以及HDFS的过去以及未来发展的动机,分享了HDFS的优势所在以及面对的主要挑战,并分享了弹性的HDFS以及泛化存储层的存储容器。

ee45d569e75932b5b570835f4ff06faa40def85d

8a207eba3e44e4960a9a29a7286fe3881a5c7e8b

e685bb0246e6ec2d5806b8d11f2c6cba9be4d769

7c4bd92bdfb969144257ed3c71345e412f255ddd

e74d73079e4ccb4d15ea3d3759b2bbf888ed0979

91d96711fc61d1abd3d105154a8c891ceaa3f6dd

cba86c41588c937541410f94b8cff47bdab0c5e6

78e22169106d61fc902581df0069feeac6a8d32b

3bb112f2b8a90f1771aab0f29e6e467da6ea0304

5a37a84f3693803526d08302204b049e8c336937

06ff5899099a55a59916083d2f08b5a1ab7bf30f

06e06b2073d1368dcf98ebfb643358714588dce2

61c4ae49e8f28426e6ea3980236187b3de2fb99c

6fc198914eff3451da6e843d7c9b9bfedaefda6f

dc463dec44f4fddc00e284efb128687714e493b1

ae3fb5672ebe49741e9b820bb0242be2ec0f6c64

5efb8bb16f4689e3603d3f87312ff1e1d156259a

f737f272610b4dd758dab87ae596c60acd6ed6c7

8658de8ce2046e93eb4052634703d3b8a4795ea7

857ea442b4dd71fb559e24b7543cd53473f25fe9

fde8b9f158460beb76a7b82e26164d6e4e251451

48ba6472d354e2a238054d907a7efa0d33e2c010



相关文章
|
12天前
|
存储 分布式计算 资源调度
通过日志聚合将作业日志存储在HDFS中
如何通过配置Hadoop的日志聚合功能,将作业日志存储在HDFS中以实现长期保留,并详细说明了相关配置参数和访问日志的方法。
14 0
通过日志聚合将作业日志存储在HDFS中
|
22天前
|
存储 分布式计算 Hadoop
【揭秘Hadoop背后的秘密!】HDFS读写流程大曝光:从理论到实践,带你深入了解Hadoop分布式文件系统!
【8月更文挑战第24天】Hadoop分布式文件系统(HDFS)是Hadoop生态系统的关键组件,专为大规模数据集提供高效率存储及访问。本文深入解析HDFS数据读写流程并附带示例代码。HDFS采用NameNode和DataNode架构,前者负责元数据管理,后者承担数据块存储任务。文章通过Java示例演示了如何利用Hadoop API实现数据的写入与读取,有助于理解HDFS的工作原理及其在大数据处理中的应用价值。
38 1
|
15天前
|
存储 机器学习/深度学习 分布式计算
HDFS与网络附加存储(NAS)的比较
【8月更文挑战第31天】
25 0
|
18天前
|
存储 分布式计算 资源调度
Hadoop生态系统概览:从HDFS到Spark
【8月更文第28天】Hadoop是一个开源软件框架,用于分布式存储和处理大规模数据集。它由多个组件构成,旨在提供高可靠性、高可扩展性和成本效益的数据处理解决方案。本文将介绍Hadoop的核心组件,包括HDFS、MapReduce、YARN,并探讨它们如何与现代大数据处理工具如Spark集成。
44 0
|
1月前
|
存储 分布式计算 Hadoop
|
14天前
|
图形学 数据可视化 开发者
超实用Unity Shader Graph教程:从零开始打造令人惊叹的游戏视觉特效,让你的作品瞬间高大上,附带示例代码与详细步骤解析!
【8月更文挑战第31天】Unity Shader Graph 是 Unity 引擎中的强大工具,通过可视化编程帮助开发者轻松创建复杂且炫酷的视觉效果。本文将指导你使用 Shader Graph 实现三种效果:彩虹色渐变着色器、动态光效和水波纹效果。首先确保安装最新版 Unity 并启用 Shader Graph。创建新材质和着色器图谱后,利用节点库中的预定义节点,在编辑区连接节点定义着色器行为。
55 0
|
20天前
|
分布式计算 资源调度 Hadoop
Hadoop入门基础(五):Hadoop 常用 Shell 命令一网打尽,提升你的大数据技能!
Hadoop入门基础(五):Hadoop 常用 Shell 命令一网打尽,提升你的大数据技能!
|
21天前
|
存储 SQL 分布式计算
Hadoop生态系统概述:构建大数据处理与分析的基石
【8月更文挑战第25天】Hadoop生态系统为大数据处理和分析提供了强大的基础设施和工具集。通过不断扩展和优化其组件和功能,Hadoop将继续在大数据时代发挥重要作用。
|
22天前
|
资源调度 分布式计算 Hadoop
揭秘Hadoop Yarn背后的秘密!它是如何化身‘资源大师’,让大数据处理秒变高效大戏的?
【8月更文挑战第24天】在大数据领域,Hadoop Yarn(另一种资源协调者)作为Hadoop生态的核心组件,扮演着关键角色。Yarn通过其ResourceManager、NodeManager、ApplicationMaster及Container等组件,实现了集群资源的有效管理和作业调度。当MapReduce任务提交时,Yarn不仅高效分配所需资源,还能确保任务按序执行。无论是处理Map阶段还是Reduce阶段的数据,Yarn都能优化资源配置,保障任务流畅运行。此外,Yarn还在Spark等框架中展现出灵活性,支持不同模式下的作业执行。未来,Yarn将持续助力大数据技术的发展与创新。
27 2

相关实验场景

更多