传统企业装上“智慧大脑” 看阿里如何实践AI赋能

简介: 人工智能现在已经在阿里巴巴智能HR、智能法务等多个领域得到了广泛应用。那么阿里巴巴究竟是如何通过AI等技术手段,赋能组织,让企业顺利完成数字化转型的?本期文章,来自阿里巴巴企业智能的资深算法专家李波将为大家解开阿里企业智慧大脑的神秘面纱。

人工智能现在已经在阿里巴巴智能HR、智能法务等多个领域得到了广泛应用。那么阿里巴巴究竟是如何通过AI等技术手段,赋能组织,让企业顺利完成数字化转型的?

本期文章,来自阿里巴巴企业智能的资深算法专家李波将为大家解开阿里企业智慧大脑的神秘面纱。

20190722233730.jpg

"业务上云、数据整合、应用创新"是打造企业智慧大脑的三个步骤。结合阿里巴巴企业智能的实际经验,李波认为可以从下述三点最佳实践中着手:

1、打破信息孤岛。
这里的"信息孤岛"主要针对企业内部的数据不互通。造成原因一是业务发展的不均衡,以及技术系统发展的先后关系。这就造成两个系统在描述同一个业务概念的时候,使用了不同的数据模型,导致数据无法打通。

二是大量的数据还存在于线下,比如纸质文件,法律文书、报销票据以及用户行为(如:会议室是否正在被使用)等。此时需要运用NLP,CV等AI技术,结合相对低成本的Iot设备,来打破信息孤岛,帮助我们提升效率。

2、深度融入应用。
以行业+AI的方式,将AI融入应用。传统行业的组织内部运作已经较为成熟,但是有大量的人工工作,效率较低,且容易出错。AI的介入,能够更好提升运营效率。

3、C2B迁移。
即C类成功的AI经验迁移到B类应用中。李波认为,虽然C类与B类应用存在差异,但一些好的C类经验与技术实践能帮助B类场景中, ,有效地缩短企业智慧大脑的构建路径。而这可以是未来5-10年,建设企业智慧大脑的重点探索方向。

结合这三点最佳实践,阿里巴巴在智慧HR、智慧法务领域都已取得到一些成功尝试:

智慧HR

智能晋升辅助——AI减少人工主观偏差

在HR的晋升场景中,如果一个有一定规模的团队要去考虑人员晋升,通常会遇到如下两个问题:1、有哪些候选人有晋升潜力。2、不同候选人,谁更符合晋升标准。

以往主要是由主管与HR来给出答案,但这中间会存在不可避免的人工偏差。如果用AI提供辅助决策,就可能尽量减少人工带来的主观偏差。

20190722233857.jpg

基于阿里巴巴集团内部数据,从绩效和潜力、沉淀和分享、质量和产出、投入和效率这四个维度,阿里巴巴构建了一个客观的指标体系,并在这一体系中搭建机器学习模型,能对晋升做出辅助预判。

比如,某位候选人,他与晋升标准、与以往的晋升案例对比,他的晋升概率会有多少,以此来帮助主管或HR做决断。

目前智能晋升辅助系统的AI决策主要作用在提名和评审阶段。针对初级和中级职位,智能晋升辅助系统已经达到98%的预测准确率。并且能够覆盖40%的潜在晋升人群。对于阿里巴巴这样一个大的集团而言,这个数字对于企业效率的提升已经起到相当大的作用。

面试官评价模型——AI提升效率深入洞见

此外,阿里巴巴还为HR晋升工作创建了面试官评价模型。

面试官的面试技能和成熟度,直接决定了招聘的效率和效果。但不同于晋升辅助模型,面试官模型缺乏客观的历史数据。

对此,构建面试官评价模式时需要选择用主动学习的方式,将人工建模与机器建模结合。

20190722235347.jpg

在人工建模阶段,深入引入专家经验,人工生成指向性规则指标。再通过对样本的人工标注结果,去反推数据进行调整,直到生成最终的面试官评价。

有了人工标注的数据后,再进入到机器建模阶段。在机器建模中,不仅能得到自动模型,还能从数据里挖掘特征,如:符合哪些特征的面试官,他有哪些倾向性。这些数据特征再反过来辅助人工建模与标注。

通过Active Learing,这一面试官评价模型在对面试官评价的准确度上能保持在90%以上,并且覆盖20%的面试官。虽然20%的覆盖数字本身可能不大,但它已经足够支撑招聘团队去针对面试官做出面试技能培训、复盘跟进等相应运营调整。

智能花名——AI催化有温度的组织文化

花名是阿里巴巴独特的文化,也是阿里这个有温度的组织文化体现。但由于每个员工花名的独一性,即使离职员工花名也会得到保留,所以新同学入职后发现取花名很难。

20190722234002.jpg

于是在新人取花名的场景中,AI提供了这样一个功能——智能花名。它可以随机推荐花名,也可以指定关键词去检索花名,甚至还可以基于描述、释义偏好来取名。例如,你希望花名中含有"在前面开路引导的人"的意义,智能花名系统就会推荐"先驱"、"先锋"、"开拓"等花名给你。智能花名系统上线以来,员工采纳率达到60%以上。

智慧法务

自动文书审核——AI将重复繁冗的业务环节自动化

自动文书协议审核就是开头提到与8名专业律师PK的AI机器人。它能自动审核协议中存在的潜在风险,并给出建议。能进一步降低平台风险。目前,自动文书协议审核的识别准确率在98%左右,能检测出85%的违规内容。

20190.jpg

除了协议审核外,AI还能帮助进行合同形式的审核。包括合同文本内容一致性审核、合同金额正确性检查(如大写金额和小写金额是否一致)、条款完备性检查以及序号、错别字检查等。这些都是在日常工作中能够极大帮助法务人员,从日常大量繁琐工作中解放出来,专注到更有创造性的工作中去。

智能文书录入——AI让线上线下的信息无缝对接

大量法律文书,无论是合同文书,诉状,还是证据等,主要以纸质形式存在。怎样把纸质文件快速录入到系统中,是提升整个工作效率最关键的一环。

智能文书录入就为这一法务场景提供解决办法。它不仅能将线下文本自动转化到线上,更能自动提取录入关键信息。

20190722234049.jpg

纸质文件在完成扫描后,通过OCR识别出文本内容,同时通过成熟的NLP技术,对文本进行分析与信息抽取,提取出一些关键字段,例如甲方乙方等。同时,系统还能对条款进行些分类,比如条款属于哪些类型,又有哪些条款需要重点关注。目前文书抽取的准确率达到98%,条款分类的准确率在94%左右。

这些智能录入的文书信息,后续无论是做搜索的应用,还是BI统计应用,都非常有用。

智能合同搜索——AI让合同搜索更快速、准确和安全

法务同学在日常工作中的合同检索量较大,在这一场景中,智能合同搜索功能能做到毫秒级别的检索性能和检索响应,确保时效性。

20190722234116.jpg

此外,合同检索对安全性和保密性要求极高,这套系统在开发和部署阶段,实现了一整套密态检索功能,能有效保障数据的安全性。

目前,针对法律文书的特点,系统还实现了定制化检索和排序的流程,使得整体检索相关度在90%以上。

企业智慧大脑是新兴的一个领域,未来,阿里巴巴也将不断深化AI应用,实现企业的数字化转型。

相关文章
|
5天前
|
机器学习/深度学习 人工智能 资源调度
从 DeepSeek 到 AI 工具箱:Websoft9 应用托管平台赋能高校教学与科研
Websoft9应用托管平台整合DeepSeek大模型与主流AI工具,助力高校教学与科研智能化转型。平台解决环境部署碎片化、资源利用低效及技术应用孤岛化等挑战,通过智能内核层、工具矩阵层和资源调度层实现高效技术融合。实际案例显示,平台显著提升教学精准度与科研协作效率,同时遵循开放兼容、安全可控等原则,推动认知增强型课堂与虚实联动实验空间的构建,为高等教育带来可持续发展的智能化基座。
32 1
|
8天前
|
存储 人工智能 缓存
AI变革药物研发:深势科技的云原生实践之路
阿里云与深势科技联合推出Bohrium®科研云平台和Hermite®药物计算设计平台,通过分子模拟技术大幅缩短药物研发周期、降低成本并提升成功率,为生物医药行业带来变革。
69 38
|
1天前
|
人工智能 API 语音技术
HarmonyOS Next~鸿蒙AI功能开发:Core Speech Kit与Core Vision Kit的技术解析与实践
本文深入解析鸿蒙操作系统(HarmonyOS)中的Core Speech Kit与Core Vision Kit,探讨其在AI功能开发中的核心能力与实践方法。Core Speech Kit聚焦语音交互,提供语音识别、合成等功能,支持多场景应用;Core Vision Kit专注视觉处理,涵盖人脸检测、OCR等技术。文章还分析了两者的协同应用及生态发展趋势,展望未来AI技术与鸿蒙系统结合带来的智能交互新阶段。
49 31
|
8天前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
7天前
|
存储 人工智能 物联网
ACK Gateway with AI Extension:大模型推理的模型灰度实践
本文介绍了如何使用 ACK Gateway with AI Extension 组件在云原生环境中实现大语言模型(LLM)推理服务的灰度发布和流量分发。该组件专为 LLM 推理场景设计,支持四层/七层流量路由,并提供基于模型服务器负载感知的智能负载均衡能力。通过自定义资源(CRD),如 InferencePool 和 InferenceModel,可以灵活配置推理服务的流量策略,包括模型灰度发布和流量镜像。
|
5天前
|
存储 人工智能 JavaScript
构建企业AI的信任与信心基石:从认知到实践的全面升级
本文探讨企业在人工智能(AI)广泛应用背景下面临的信任与信心挑战,提出通过数据安全、技术透明度及技能认证构建信任体系。重点介绍生成式人工智能认证(GAI),其能助力企业培养AI人才,提升团队专业能力。文章还建议企业加强内部培训、外部合作与实战应用评估,全方位推动AI战略落地,为企业发展提供支持。
|
14天前
|
人工智能 自然语言处理 IDE
通义灵码 2.0 评测:AI 赋能编程,开启高效研发新旅程
通义灵码2.0通过AI赋能编程,显著提升开发效率与代码质量。安装便捷,支持自然语言描述需求自动生成高质量代码框架及注释,大幅简化新功能开发流程。其单元测试Agent能快速生成全面测试用例,覆盖更多边界情况。相比1.0版本,2.0在智能问答和代码生成速度上均有显著提升,为开发者带来高效研发新体验。
91 6
|
14天前
|
人工智能 运维 监控
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。
|
14天前
|
域名解析 人工智能 API
使用 Websoft9 面板部署 LobeChat,打造个人 AI 大脑
本书详细介绍了从服务器环境准备到LobeChat部署与维护的全过程。首先,指导用户选购云服务器并配置安全组和SSH登录;接着,通过Websoft9面板一键安装并初始化,支持域名解析。随后,重点讲解了LobeChat的部署方法,包括应用市场和手动部署,并深入探讨多模型接入及插件扩展。最后,提供了日常维护命令和常见问题解决方法,确保系统稳定运行。适合新手及进阶用户参考。
39 0
|
22天前
|
人工智能 弹性计算 Ubuntu
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
1057 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用

热门文章

最新文章