Flink实战项目之实时热销排行

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 需求某个图书网站,希望看到双十一秒杀期间实时的热销排行榜单。我们可以将“实时热门商品”翻译成程序员更好理解的需求:每隔5秒钟输出最近一小时内点击量最多的前 N 个商品/图书.需求分解将这个需求进行分解我们大概要做这么几件事情:告诉 Flink 框架基于时间做窗口,我们这里用process...

需求

某个图书网站,希望看到双十一秒杀期间实时的热销排行榜单。我们可以将“实时热门商品”翻译成程序员更好理解的需求:每隔5秒钟输出最近一小时内点击量最多的前 N 个商品/图书.

需求分解

将这个需求进行分解我们大概要做这么几件事情:

  • 告诉 Flink 框架基于时间做窗口,我们这里用processingTime,不用自带时间戳
  • 过滤出图书点击行为数据
  • 按一小时的窗口大小,每5秒钟统计一次,做滑动窗口聚合(Sliding Window)
  • 聚合,输出窗口中点击量前N名的商品

代码实现

向Kafka发消息模拟购买事件

public class KafkaProducer {


    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> text = env.addSource(new MyNoParalleSource()).setParallelism(1);

        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "127.0.0.1:9092");
        //new FlinkKafkaProducer("topn",new KeyedSerializationSchemaWrapper(new SimpleStringSchema()),properties,FlinkKafkaProducer.Semantic.EXACTLY_ONCE);
        FlinkKafkaProducer<String> producer = new FlinkKafkaProducer("topn",new SimpleStringSchema(),properties);
/*
        //event-timestamp事件的发生时间
        producer.setWriteTimestampToKafka(true);
*/
        text.addSink(producer);
        env.execute();
    }
}//

其中的:MyNoParalleSource 是作者自己实现的一个并行度为1的发送器,用来向kafka发送数据:

public class MyNoParalleSource implements SourceFunction<String> {//1

    //private long count = 1L;
    private boolean isRunning = true;

    /**
     * 主要的方法
     * 启动一个source
     * 大部分情况下,都需要在这个run方法中实现一个循环,这样就可以循环产生数据了
     *
     * @param ctx
     * @throws Exception
     */
    @Override
    public void run(SourceContext<String> ctx) throws Exception {
        while(isRunning){
            //图书的排行榜
            List<String> books = new ArrayList<>();
            books.add("Pyhton从入门到放弃");//10
            books.add("Java从入门到放弃");//8
            books.add("Php从入门到放弃");//5
            books.add("C++从入门到放弃");//3
            books.add("Scala从入门到放弃");//0-4
            int i = new Random().nextInt(5);
            ctx.collect(books.get(i));

            //每1秒产生一条数据
            Thread.sleep(1000);
        }
    }
    //取消一个cancel的时候会调用的方法
    @Override
    public void cancel() {
        isRunning = false;
    }
}

可见,我们每过1秒向Kafka的topn这个topic随机发送一本书的名字用来模拟购买行为。

整体实现代码如下:

public class TopN {

    public static void main(String[] args) throws Exception{

        /**
         *
         *  书1 书2 书3
         *  (书1,1) (书2,1) (书3,1)
         *
         *
         */
        //每隔5秒钟 计算过去1小时 的 Top 3 商品
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime); //以processtime作为时间语义


        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "127.0.0.1:9092");
        FlinkKafkaConsumer<String> input = new FlinkKafkaConsumer<>("topn", new SimpleStringSchema(), properties);

        //从最早开始消费 位点
        input.setStartFromEarliest();


        DataStream<String> stream = env
                .addSource(input);

        DataStream<Tuple2<String, Integer>> ds = stream
                .flatMap(new LineSplitter()); //将输入语句split成一个一个单词并初始化count值为1的Tuple2<String, Integer>类型


        DataStream<Tuple2<String, Integer>> wcount = ds
                .keyBy(0)
                .window(SlidingProcessingTimeWindows.of(Time.seconds(600),Time.seconds(5)))
                //key之后的元素进入一个总时间长度为600s,每5s向后滑动一次的滑动窗口
                .sum(1);// 将相同的key的元素第二个count值相加

        wcount
                .windowAll(TumblingProcessingTimeWindows.of(Time.seconds(5)))//(shu1, xx) (shu2,xx)....
                //所有key元素进入一个5s长的窗口(选5秒是因为上游窗口每5s计算一轮数据,topN窗口一次计算只统计一个窗口时间内的变化)
                .process(new TopNAllFunction(3))
                .print();
//redis sink  redis -> 接口

        env.execute();
    }//





    private static final class LineSplitter implements
            FlatMapFunction<String, Tuple2<String, Integer>> {

        public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
            // normalize and split the line
            //String[] tokens = value.toLowerCase().split("\\W+");

            // emit the pairs
            /*for (String token : tokens) {
                if (token.length() > 0) {
                    out.collect(new Tuple2<String, Integer>(token, 1));
                }
            }*/

            //(书1,1) (书2,1) (书3,1)
            out.collect(new Tuple2<String, Integer>(value, 1));
        }
    }

    private static class TopNAllFunction
            extends
            ProcessAllWindowFunction<Tuple2<String, Integer>, String, TimeWindow> {

        private int topSize = 3;

        public TopNAllFunction(int topSize) {

            this.topSize = topSize;
        }

        public void process(

                ProcessAllWindowFunction<Tuple2<String, Integer>, String, TimeWindow>.Context arg0,
                Iterable<Tuple2<String, Integer>> input,
                Collector<String> out) throws Exception {

            TreeMap<Integer, Tuple2<String, Integer>> treemap = new TreeMap<Integer, Tuple2<String, Integer>>(
                    new Comparator<Integer>() {

                        @Override
                        public int compare(Integer y, Integer x) {
                            return (x < y) ? -1 : 1;
                        }

                    }); //treemap按照key降序排列,相同count值不覆盖

            for (Tuple2<String, Integer> element : input) {
                treemap.put(element.f1, element);
                if (treemap.size() > topSize) { //只保留前面TopN个元素
                    treemap.pollLastEntry();
                }
            }


            for (Map.Entry<Integer, Tuple2<String, Integer>> entry : treemap
                    .entrySet()) {
                out.collect("=================\n热销图书列表:\n"+ new Timestamp(System.currentTimeMillis()) +  treemap.toString() + "\n===============\n");
            }

        }

    }


}//

查看输出:

=================
热销图书列表:
2019-03-05 22:32:40.004{8=(Java从入门到放弃,8), 7=(C++从入门到放弃,7), 5=(Php从入门到放弃,5)}
===============
=================
热销图书列表:
2019-03-05 22:32:45.004{8=(Java从入门到放弃,8), 7=(C++从入门到放弃,7), 5=(Php从入门到放弃,5)}
===============
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
8月前
|
SQL Java 关系型数据库
Flink DataSet API迁移到DataStream API实战
本文介绍了作者的Flink项目从DataSet API迁移到DataStream API的背景、方法和遇到的问题以及解决方案。
225 3
|
8月前
|
Java 流计算
【极数系列】Flink搭建入门项目Demo & 秒懂Flink开发运行原理(05)
【极数系列】Flink搭建入门项目Demo & 秒懂Flink开发运行原理(05)
276 3
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
157 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
12天前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
302 2
探索Flink动态CEP:杭州银行的实战案例
|
5月前
|
大数据 API 数据处理
揭秘!Flink如何从默默无闻到大数据界的璀璨明星?起源、设计理念与实战秘籍大公开!
【8月更文挑战第24天】Apache Flink是一款源自Stratosphere项目的开源流处理框架,由柏林理工大学等机构于2010至2014年间开发,并于2014年捐赠给Apache软件基金会。Flink设计之初即聚焦于提供统一的数据处理模型,支持事件时间处理、精确一次状态一致性等特性,实现了流批一体化处理。其核心优势包括高吞吐量、低延迟及强大的容错机制。
88 1
|
5月前
|
SQL 存储 资源调度
实时计算 Flink版操作报错合集之启动项目时报错缺少MySqlValidator类,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
5月前
|
API C# Shell
WPF与Windows Shell完美融合:深入解析文件系统操作技巧——从基本文件管理到高级Shell功能调用,全面掌握WPF中的文件处理艺术
【8月更文挑战第31天】Windows Presentation Foundation (WPF) 是 .NET Framework 的关键组件,用于构建 Windows 桌面应用程序。WPF 提供了丰富的功能来创建美观且功能强大的用户界面。本文通过问题解答的形式,探讨了如何在 WPF 应用中集成 Windows Shell 功能,并通过具体示例代码展示了文件系统的操作方法,包括列出目录下的所有文件、创建和删除文件、移动和复制文件以及打开文件夹或文件等。
108 0
|
8月前
|
Oracle Java 关系型数据库
实时计算 Flink版产品使用合集之在同步Oracle数据时,需要下载并添加到项目中的jar包主要包括哪些
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
消息中间件 API Apache
官宣|阿里巴巴捐赠的 Flink CDC 项目正式加入 Apache 基金会
本文整理自阿里云开源大数据平台徐榜江 (雪尽),关于阿里巴巴捐赠的 Flink CDC 项目正式加入 Apache 基金会。
2111 2
官宣|阿里巴巴捐赠的 Flink CDC 项目正式加入 Apache 基金会
|
8月前
|
传感器 存储 缓存
[尚硅谷flink学习笔记] 实战案例TopN 问题
这段内容是关于如何使用Apache Flink解决实时统计水位传感器数据中,在一定时间窗口内出现次数最多的水位问题,即&quot;Top N&quot;问题。首先,介绍了一个使用滑动窗口的简单实现,通过收集传感器数据,按照水位计数,然后排序并输出前两名。接着,提出了全窗口和优化方案,其中优化包括按键分区(按水位vc分组)、开窗操作(增量聚合计算count)和过程函数处理(聚合并排序输出Top N结果)。最后,给出了一个使用`KeyedProcessFunction`进行优化的示例代码,通过按键by窗口结束时间,确保每个窗口的所有数据到达后再进行处理,提高了效率。
198 1