像Google一样构建机器学习系统 - 在阿里云上搭建Kubeflow Pipelines-阿里云开发者社区

开发者社区> 必嘫> 正文

像Google一样构建机器学习系统 - 在阿里云上搭建Kubeflow Pipelines

简介: 谈到机器学习工作流平台,Google的工程经验非常丰富,它的TensorFlow Extended机器学习平台支撑了Google的搜索,翻译,视频等核心业务;更重要的是其对机器学习领域工程效率问题的理解深刻,
+关注继续查看

本系列将利用阿里云容器服务,帮助您上手Kubeflow Pipelines.

介绍

机器学习的工程复杂度,除了来自于常见的软件开发问题外,还和机器学习数据驱动的特点相关。而这就带来了其工作流程链路更长,数据版本失控,实验难以跟踪、结果难以重现,模型迭代成本巨大等一系列问题。为了解决这些机器学习固有的问题,很多企业构建了内部机器学习平台来管理机器学习生命周期,其中最有名的是Google的Tensorflow Extended,Facebook的FBLearner Flow,Uber的Michelangelo,遗憾的是这些平台都需要绑定在公司内部的基础设施之上,无法彻底开源。而这些机器学习平台的骨架就是机器学习工作流系统,它可以让数据科学家灵活定义自己的机器学习流水线,重用已有的数据处理和模型训练能力,进而更好的管理机器学习生命周期。

1_overview

谈到机器学习工作流平台,Google的工程经验非常丰富,它的TensorFlow Extended机器学习平台支撑了Google的搜索,翻译,视频等核心业务;更重要的是其对机器学习领域工程效率问题的理解深刻,

Google的Kubeflow团队于2018年底开源了Kubeflow Pipelines(KFP), KFP的设计与Google内部机器学习平台TensorFlow Extended一脉相承,唯一的区别是KFP运行在Kubenretes的平台上,TFX是运行在Borg之上的。

什么是Kubeflow Pipelines

Kubeflow Pipelines平台包括:

  • 能够运行和追踪实验的管理控制台
  • 能够执行多个机器学习步骤的工作流引擎(Argo)
  • 用来自定义工作流的SDK,目前只支持Python

而Kubeflow Pipelines的目标在于:

  • 端到端的任务编排: 支持编排和组织复杂的机器学习工作流,该工作流可以被直接触发,定时触发,也可以由事件触发,甚至可以实现由数据的变化触发
  • 简单的实验管理: 帮助数据科学家尝试众多的想法和框架,以及管理各种试验。并实现从实验到生产的轻松过渡。
  • 通过组件化方便重用: 通过重用Pipelines和组件快速创建端到端解决方案,无需每次从0开始的重新构建。

在阿里云上运行Kubeflow Pipelines

看到Kubeflow Piplines的能力,大家是不是都摩拳擦掌,想一睹为快?但是目前国内想使用Kubeflow Pipeline有两个挑战:
1.Pipelines需要通过Kubeflow部署;而Kubeflow默认组件过多,同时通过Ksonnet部署Kubeflow也是很复杂的事情。 2.Pipelines本身和谷歌云平台有深度耦合,无法在运行其他云平台上或者裸金属服务器的环境。

为了方便国内的用户安装Kubeflow Pipelines,阿里云容器服务团队提供了基于Kustomize的Kubeflow Pipelines部署方案。和普通的Kubeflow基础服务不同,Kubeflow Pipelines需要依赖于mysql和minio这些有状态服务,也就需要考虑如何持久化和备份数据。在本例子中,我们借助阿里云SSD云盘作为数据持久化的方案,分别自动的为mysql和minio创建SSD云盘。

您可以在阿里云上尝试一下单独部署最新版本Kubeflow Pipelines。

前提条件

在Linux和Mac OS环境,可以执行

opsys=linux  # or darwin, or windows
curl -s https://api.github.com/repos/kubernetes-sigs/kustomize/releases/latest |\
  grep browser_download |\
  grep $opsys |\
  cut -d '"' -f 4 |\
  xargs curl -O -L
mv kustomize_*_${opsys}_amd64 /usr/bin/kustomize
chmod u+x /usr/bin/kustomize

在Windows环境,可以下载kustomize_2.0.3_windows_amd64.exe

  • 在阿里云容器服务创建Kubernetes集群, 可以参考 文档

部署过程

1.通过ssh访问Kubernetes集群,具体方式可以参考文档

2.下载源代码

yum install -y git
git clone --recursive https://github.com/aliyunContainerService/kubeflow-aliyun

3.安全配置

3.1 配置TLS证书。如果没有TLS证书,可以通过下列命令生成

yum install -y openssl
domain="pipelines.kubeflow.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.key -out kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.crt -subj "/CN=$domain/O=$domain"

如果您有TLS证书,请分别将私钥和证书保存到kubeflow-aliyun/overlays/ack-auto-clouddisk/tls.keykubeflow-aliyun/overlays/ack-auto-clouddisk/tls.crt

3.2 配置admin的登录密码

yum install -y httpd-tools
htpasswd -c kubeflow-aliyun/overlays/ack-auto-clouddisk/auth admin
New password:
Re-type new password:
Adding password for user admin

4.首先利用kustomize生成部署yaml

cd kubeflow-aliyun/
kustomize build overlays/ack-auto-clouddisk > /tmp/ack-auto-clouddisk.yaml

5.查看所在的Kubernetes集群节点所在的地域和可用区,并且根据其所在节点替换可用区,假设您的集群所在可用区为cn-hangzhou-g,可以执行下列命令

sed -i.bak 's/regionid: cn-beijing/regionid: cn-hangzhou/g' \
    /tmp/ack-auto-clouddisk.yaml

sed -i.bak 's/zoneid: cn-beijing-e/zoneid: cn-hangzhou-g/g' \
    /tmp/ack-auto-clouddisk.yaml

建议您检查一下/tmp/ack-auto-clouddisk.yaml修改是否已经设置

6.将容器镜像地址由gcr.io替换为registry.aliyuncs.com

sed -i.bak 's/gcr.io/registry.aliyuncs.com/g' \
    /tmp/ack-auto-clouddisk.yaml

建议您检查一下/tmp/ack-auto-clouddisk.yaml修改是否已经设置

7.调整使用磁盘空间大小, 比如需要调整磁盘空间为200G

sed -i.bak 's/storage: 100Gi/storage: 200Gi/g' \
    /tmp/ack-auto-clouddisk.yaml

8.验证pipelines的yaml文件

kubectl create --validate=true --dry-run=true -f /tmp/ack-auto-clouddisk.yaml

9.利用kubectl部署pipelines

kubectl create -f /tmp/ack-auto-clouddisk.yaml

10.查看访问pipelines的方式,我们通过ingress暴露pipelines服务,在本例子中,访问ip是112.124.193.271。而Pipelines管理控制台的链接是:https://112.124.193.271/pipeline/

kubectl get ing -n kubeflow
NAME             HOSTS   ADDRESS           PORTS     AGE
ml-pipeline-ui   *       112.124.193.271   80, 443   11m

11.访问pipelines管理控制台

如果使用自签发证书,会提示此链接非私人链接,请点击显示详细信息, 并点击访问此网站。

non_tls

请输入步骤2.2中的用户名admin和设定的密码

auth

这时就可以使用pipelines管理和运行训练任务了。

pipelines

Q&A

1.为什么这里要使用阿里云的SSD云盘?

这是由于阿里云的SSD云盘可以设置定期的自动备份,保证pipelines中的元数据不会丢失。

2.如何进行云盘备份?

如果您想备份云盘的内容,可以为云盘 手动创建快照 或者 为硬盘设置自动快照策略 按时自动创建快照。

3.如何清理Kubeflow Piplines部署?

这里的清理工作分为两个部分:

  • 删除Kubeflow Pipelines的组件
kubectl delete -f /tmp/ack-auto-clouddisk.yaml
  • 通过释放云盘分别释放mysql和minio存储对应的两个云盘

4.如何使用现有云盘作为数据库存储,而避免自动创建云盘?

请参考文档

总结

本文为您初步介绍了Kubeflow Pipelines的背景和其所要解决的问题,以及如何在阿里云上通过Kustomize快速构建一套服务于机器学习的Kubeflow Pipelines,后续我们会分享如何利用Kubeflow Pipelines开发一个完整的机器学习流程。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
机器学习之旅---logistic回归
一、logistic回归分析简介     logistic回归是研究观察结果(因变量)为二分类或多分类时,与影响因素(自变量)之间关系的一种多变量分析方法,属于概率型非线性回归。
910 0
《高性能Linux服务器构建实战》——1.4节Nginx的安装与配置
本节书摘来自华章社区《高性能Linux服务器构建实战》一书中的第1章,第1.4节Nginx的安装与配置,作者:高俊峰,更多章节内容可以访问云栖社区“华章社区”公众号查看
1482 0
轻量化AI服务再添两将!阿里云机器学习PAI DSW 2.0 & Alink商业版重磅发布
近日,阿里云推出机器学习PAI两大新品DSW 2.0 & Alink商业版,机器学习PAI产品家族,覆盖了机器学习的数据处理、建模、训练、模型优化、在线预测的全产品线,用户既可以搭建完整的个性化推荐系统,让CTR提高10%+; 也可以使用Blade进行深度学习模型进行优化,节省GPU消耗50%。
539 0
阿里云ET大脑接入澳门,构建人工智能中枢
本文讲的是阿里云ET大脑接入澳门,构建人工智能中枢【IT168 云计算】澳门这座古老而现代的国际都市将以开放的姿态全面拥抱云计算和人工智能。
1892 0
(八):构建WineLib DLL
版权声明:您好,转载请留下本人博客的地址,谢谢 https://blog.csdn.net/hongbochen1223/article/details/50704597 (一):介绍 出于某些原因,你可能会发现你想要和使用Windows DLL一样使用你的Linux库.
1067 0
《高性能Linux服务器构建实战》——1.5节Nginx常用配置实例
本节书摘来自华章社区《高性能Linux服务器构建实战》一书中的第1章,第1.5节Nginx常用配置实例,作者:高俊峰,更多章节内容可以访问云栖社区“华章社区”公众号查看
970 0
构建在线教育弹性高可用视频处理架构实战
对于负责建设视频处理系统的技术团队而言,这样的业务场景就留给了他们一系列的挑战。
1020 0
《高性能Linux服务器构建实战》——1.6节Nginx性能优化技巧
本节书摘来自华章社区《高性能Linux服务器构建实战》一书中的第1章,第1.6节Nginx性能优化技巧,作者:高俊峰,更多章节内容可以访问云栖社区“华章社区”公众号查看
896 0
+关注
必嘫
阿里云技术专家,在应用性能监控和软件交付方面有丰富的实践经验,目前专注于容器服务,微服务以及机器学习等领域。
43
文章
0
问答
来源圈子
更多
容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级 Kubernetes 容器化应用的全生命周期管理。容器服务 Kubernetes 版简化集群的搭建和扩容等工作,整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳的 Kubernetes 容器化应用运行环境。
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载