书籍:Python机器学习蓝图第2版 Python Machine Learning Blueprints 2nd - 2019.pdf

简介: 简介通过使用scikit-learn,TensorFlow和Keras等库来应对日常问题,发现基于项目的方法来掌握机器学习概念主要特点•掌握Python的机器学习库,包括scikit-learn,TensorFlow和Keras•在实际项目中实施高级概念和流行的机器学习算法•构建分析,计算机视觉和神经网络项目图书说明机器学习正在改变我们理解和与周围世界互动的方式。

简介

图片.png

通过使用scikit-learn,TensorFlow和Keras等库来应对日常问题,发现基于项目的方法来掌握机器学习概念

主要特点
•掌握Python的机器学习库,包括scikit-learn,TensorFlow和Keras
•在实际项目中实施高级概念和流行的机器学习算法
•构建分析,计算机视觉和神经网络项目

图书说明
机器学习正在改变我们理解和与周围世界互动的方式。本书是您将知识和技能付诸实践并使用Python生态系统涵盖机器学习关键领域的完美指南。第二版涵盖了Python生态系统中的一系列库,包括TensorFlow和Keras,可帮助您实现真实的机器学习项目。

本书首先概述了使用Python进行机器学习。借助复杂的数据集和优化的技术,您将继续了解如何将高级概念和流行的机器学习算法应用于实际项目。接下来,您将涵盖来自预测分析等领域的项目,以分析股票市场和GitHub存储库的推荐系统。除此之外,您还将使用NLP域中的项目来使用scikit-learn,TensorFlow和Keras等框架创建自定义新闻源。接下来,您将学习如何构建高级聊天机器人,并使用PySpark进行扩展。在最后的章节中,您可以期待深入学习的激动人心的见解,您甚至可以使用计算机视觉和神经网络创建应用程序。

在本书的最后,您将能够无缝地分析数据并通过您的项目产生强大的影响。

参考资料

内容

  • 了解Python数据科学堆栈和常用算法
  • 建立一个模型,以预测初始公开发行(IPO)在初始离散交易窗口中的表现
  • 通过创建自定义新闻源来了解NLP概念
  • 根据您已加星标,观看或分叉的应用程序创建将推荐GitHub存储库的应用程序
  • 获得使用PySpark从头开始构建聊天机器人的技能
  • 使用库存数据开发市场预测应用程序
  • 深入研究计算机视觉,神经网络和深度学习等高级概念

针对读者

本书适用于机器学习从业者,数据科学家和深度学习爱好者,他们希望通过构建真实世界的项目将他们的机器学习技能提升到新的水平。中级指南将帮助您实现Python生态系统中的库,以构建针对各种机器学习领域的各种项目。了解Python编程和机器学习概念将会有所帮助。

相关文章
|
4月前
|
机器学习/深度学习 存储 算法
基于机器学习的地震预测(Earthquake Prediction with Machine Learning)(下)
基于机器学习的地震预测(Earthquake Prediction with Machine Learning)
106 0
|
4月前
|
机器学习/深度学习 存储 数据可视化
基于机器学习的地震预测(Earthquake Prediction with Machine Learning)(上)
基于机器学习的地震预测(Earthquake Prediction with Machine Learning)
169 0
|
6月前
|
机器学习/深度学习 存储 Linux
【机器学习 Azure Machine Learning】使用VS Code登录到Linux VM上 (Remote-SSH), 及可直接通过VS Code编辑VM中的文件
【机器学习 Azure Machine Learning】使用VS Code登录到Linux VM上 (Remote-SSH), 及可直接通过VS Code编辑VM中的文件
|
6月前
|
机器学习/深度学习 Ubuntu Linux
【机器学习 Azure Machine Learning】使用Aure虚拟机搭建Jupyter notebook环境,为Machine Learning做准备(Ubuntu 18.04,Linux)
【机器学习 Azure Machine Learning】使用Aure虚拟机搭建Jupyter notebook环境,为Machine Learning做准备(Ubuntu 18.04,Linux)
|
6月前
|
SQL 机器学习/深度学习 开发工具
【机器学习 Azure Machine Learning】Azure Machine Learning 访问SQL Server 无法写入问题 (使用微软Python AML Core SDK)
【机器学习 Azure Machine Learning】Azure Machine Learning 访问SQL Server 无法写入问题 (使用微软Python AML Core SDK)
|
8月前
|
机器学习/深度学习 算法 Python
介绍文本分类的基本概念、常用方法以及如何在Python中使用机器学习库进行文本分类
【6月更文挑战第13天】文本分类是机器学习在数字化时代的关键应用,涉及文本预处理、特征提取和模型训练等步骤。常见方法包括基于规则、关键词和机器学习,其中机器学习(如朴素贝叶斯、SVM、深度学习)是主流。在Python中,可使用scikit-learn进行文本分类,例如通过TF-IDF和朴素贝叶斯对新闻数据集进行处理和预测。随着技术发展,未来将深入探索深度学习和多模态数据在文本分类中的应用。
162 2
|
9月前
|
Python
Python-类视图和蓝图
Python-类视图和蓝图
77 2
|
9月前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】Python环境下的机器学习库概览
【4月更文挑战第30天】本文介绍了Python在机器学习中的重要性及几个主流库:NumPy用于数值计算,支持高效的数组操作;Pandas提供数据帧和序列,便利数据处理与分析;Matplotlib是数据可视化的有力工具;Scikit-learn包含多种机器学习算法,易于使用;TensorFlow和Keras是深度学习框架,Keras适合初学者;PyTorch则以其动态计算图和调试工具受到青睐。这些库助力机器学习研究与实践。
139 2
|
9月前
|
机器学习/深度学习 数据采集 算法
深度解析Python中的机器学习库:Scikit-learn
深度解析Python中的机器学习库:Scikit-learn
186 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
196 6

热门文章

最新文章

推荐镜像

更多