书籍:Python机器学习蓝图第2版 Python Machine Learning Blueprints 2nd - 2019.pdf

简介: 简介通过使用scikit-learn,TensorFlow和Keras等库来应对日常问题,发现基于项目的方法来掌握机器学习概念主要特点•掌握Python的机器学习库,包括scikit-learn,TensorFlow和Keras•在实际项目中实施高级概念和流行的机器学习算法•构建分析,计算机视觉和神经网络项目图书说明机器学习正在改变我们理解和与周围世界互动的方式。

简介

图片.png

通过使用scikit-learn,TensorFlow和Keras等库来应对日常问题,发现基于项目的方法来掌握机器学习概念

主要特点
•掌握Python的机器学习库,包括scikit-learn,TensorFlow和Keras
•在实际项目中实施高级概念和流行的机器学习算法
•构建分析,计算机视觉和神经网络项目

图书说明
机器学习正在改变我们理解和与周围世界互动的方式。本书是您将知识和技能付诸实践并使用Python生态系统涵盖机器学习关键领域的完美指南。第二版涵盖了Python生态系统中的一系列库,包括TensorFlow和Keras,可帮助您实现真实的机器学习项目。

本书首先概述了使用Python进行机器学习。借助复杂的数据集和优化的技术,您将继续了解如何将高级概念和流行的机器学习算法应用于实际项目。接下来,您将涵盖来自预测分析等领域的项目,以分析股票市场和GitHub存储库的推荐系统。除此之外,您还将使用NLP域中的项目来使用scikit-learn,TensorFlow和Keras等框架创建自定义新闻源。接下来,您将学习如何构建高级聊天机器人,并使用PySpark进行扩展。在最后的章节中,您可以期待深入学习的激动人心的见解,您甚至可以使用计算机视觉和神经网络创建应用程序。

在本书的最后,您将能够无缝地分析数据并通过您的项目产生强大的影响。

参考资料

内容

  • 了解Python数据科学堆栈和常用算法
  • 建立一个模型,以预测初始公开发行(IPO)在初始离散交易窗口中的表现
  • 通过创建自定义新闻源来了解NLP概念
  • 根据您已加星标,观看或分叉的应用程序创建将推荐GitHub存储库的应用程序
  • 获得使用PySpark从头开始构建聊天机器人的技能
  • 使用库存数据开发市场预测应用程序
  • 深入研究计算机视觉,神经网络和深度学习等高级概念

针对读者

本书适用于机器学习从业者,数据科学家和深度学习爱好者,他们希望通过构建真实世界的项目将他们的机器学习技能提升到新的水平。中级指南将帮助您实现Python生态系统中的库,以构建针对各种机器学习领域的各种项目。了解Python编程和机器学习概念将会有所帮助。

相关文章
|
8天前
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
25 1
|
4天前
|
机器学习/深度学习 监控 算法
Python数据分析与机器学习在金融风控中的应用
Python数据分析与机器学习在金融风控中的应用
30 12
|
5天前
|
机器学习/深度学习 数据采集 搜索推荐
Python数据分析与机器学习在电子商务推荐系统中的应用
Python数据分析与机器学习在电子商务推荐系统中的应用
20 5
|
5天前
|
机器学习/深度学习 算法 Python
【Python】已完美解决:机器学习填补数值型缺失值时报错)TypeError: init() got an unexpected keyword argument ‘axis’,
【Python】已完美解决:机器学习填补数值型缺失值时报错)TypeError: init() got an unexpected keyword argument ‘axis’,
12 1
|
8天前
|
机器学习/深度学习 算法 文件存储
使用Python实现深度学习模型:神经架构搜索与自动机器学习
【7月更文挑战第5天】 使用Python实现深度学习模型:神经架构搜索与自动机器学习
22 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
233 0
|
2月前
|
机器学习/深度学习 算法 Python
【Python机器学习】朴素贝叶斯分类的讲解及预测决策实战(图文解释 附源码)
【Python机器学习】朴素贝叶斯分类的讲解及预测决策实战(图文解释 附源码)
95 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
112 0
|
1月前
|
机器学习/深度学习 数据采集 API
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
【Python机器学习专栏】使用Python进行图像分类的实战案例
【4月更文挑战第30天】本文介绍了使用Python和深度学习库TensorFlow、Keras进行图像分类的实战案例。通过CIFAR-10数据集,展示如何构建和训练一个卷积神经网络(CNN)模型,实现对10个类别图像的识别。首先安装必要库,然后加载数据集并显示图像。接着,建立基本CNN模型,编译并训练模型,最后评估其在测试集上的准确性。此案例为初学者提供了图像分类的入门教程,为进一步学习和优化打下基础。