书籍:Python金融大数据分析 Python for Finance_ Mastering Data-Driven Finance 2nd - 2019.pdf

简介: 简介金融业最近以极高的速度采用了Python,一些最大的投资银行和对冲基金使用它来构建核心交易和风险管理系统。 针对Python 3进行了更新,本手册的第二版帮助您开始使用该语言,指导开发人员和定量分析师通过Python库和工具构建财务应用程序和交互式财务分析。

简介

图片.png

金融业最近以极高的速度采用了Python,一些最大的投资银行和对冲基金使用它来构建核心交易和风险管理系统。 针对Python 3进行了更新,本手册的第二版帮助您开始使用该语言,指导开发人员和定量分析师通过Python库和工具构建财务应用程序和交互式财务分析。

在整本书中使用实际例子,作者Yves Hilpisch还向您展示了如何基于一个大型的,现实的案例研究,为基于蒙特卡罗模拟的衍生品和风险分析开发一个完整的框架。 本书的大部分内容都使用了交互式IPython笔记本。

图片.png

Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具。

《Python金融大数据分析》总计分为3部分,共19章。

第 1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;

第 2部分介绍了金融分析和应用程序开发中重要的Python库、技术和方法,其内容涵盖了Python的数据类型和结构、用matplotlib进行数据可视化、金融时间序列数据处理、高性能输入/输出操作、高性能的Python技术和库、金融学中需要的多种数学工具、随机数生成和随机过程模拟、Python统计学应用、Python和Excel的集成、Python面向对象编程和GUI的开发、Python与Web技术的集成,以及基于Web应用和Web服务的开发;

第3部分关注的是蒙特卡洛模拟期权与衍生品定价实际应用的开发工作,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值、波动率期权等知识。 《Python金融大数据分析》适合对使用Python进行大数据分析、处理感兴趣的金融行业开发人员阅读。

参考资料

目录

第 1部分 Python与金融
第 1章 为什么将Python用于金融 3
1.1 Python是什么 3
1.1.1 Python简史 5
1.1.2 Python生态系统 5
1.1.3 Python用户谱系 7
1.1.4 科学栈 7
1.2 金融中的科技 8
1.2.1 科技开销 9
1.2.2 作为业务引擎的科技 9
1.2.3 作为进入门槛的科技和人才 9
1.2.4 不断提高的速度、频率、数据量 10
1.2.5 实时分析的兴起 11
1.3 用于金融的Python 12
1.3.1 金融和Python语法 12
1.3.2 Python的效率和生产率 15
1.3.3 从原型化到生产 19
1.4 结语 20
1.5 延伸阅读 20
第 2章 基础架构和工具 21
2.1 Python部署 22
2.1.1 Anaconda 22
2.1.2 Python Quant Platform 27
2.1.3 工具 30
2.1.4 Python 30
2.1.5 IPython 30
2.1.6 Spyder 40
2.2 结语 42
2.3 延伸阅读 43
第3章 入门示例 45
3.1 隐含波动率 46
3.2 蒙特卡洛模拟 54
3.2.1 纯Python 56
3.2.2 用NumPy向量化 57
3.2.3 利用对数欧拉方法实现全向量化 59
3.2.4 图形化分析 60
3.2.5 技术分析 62
3.3 结语 67
3.4 延伸阅读 68
第 2部分 金融分析和开发
第4章 数据类型和结构 71
4.1 基本数据类型 72
4.1.1 整数 72
4.1.2 浮点数 73
4.1.3 字符串 75
4.2 基本数据结构 77
4.2.1 元组 77
4.2.2 列表 78
4.2.3 离题:控制结构 80
4.2.4 离题:函数式编程 81
4.2.5 字典 82
4.2.6 集合 84
4.3 NumPy数据结构 85
4.3.1 用Python列表形成数组 85
4.3.2 常规NumPy数组 87
4.3.3 结构数组 90
4.4 代码向量化 91
4.5 内存布局 93
4.6 结语 95
4.7 延伸阅读 95
第5章 数据可视化 97
5.1 二维绘图 97
5.1.1 一维数据集 98
5.1.2 二维数据集 103
5.1.3 其他绘图样式 109
5.2 金融学图表 116
5.3 3D绘图 119
5.4 结语 122
5.5 延伸阅读 122
第6章 金融时间序列 123
6.1 pandas基础 124
6.1.1 使用DataFrame类的第 一步 124
6.1.2 使用DataFrame类的第 二步 127
6.1.3 基本分析 131
6.1.4 Series类 134
6.1.5 GroupBy操作 135
6.2 金融数据 136
6.3 回归分析 142
6.4 高频数据 150
6.5 结语 154
6.6 延伸阅读 154
第7章 输入/输出操作 155
7.1 Python基本I/O 156
7.1.1 将对象写入磁盘 156
7.1.2 读写文本文件 159
7.1.3 SQL数据库 160
7.1.4 读写NumPy数组 162
7.2 Pandas的I/O 164
7.2.1 SQL数据库 165
7.2.2 从SQL到pandas 166
7.2.3 CSV文件数据 168
7.2.4 Excel文件数据 169
7.3 PyTables的快速I/O 170
7.3.1 使用表 170
7.3.2 使用压缩表 175
7.3.3 使用数组 176
7.3.4 内存外计算 177
7.4 结语 179
7.5 延伸阅读 180
第8章 高性能的Python 181
8.1 Python范型与性能 182
8.2 内存布局与性能 184
8.3 并行计算 186
8.3.1 蒙特卡洛算法 186
8.3.2 顺序化计算 187
8.3.3 并行计算 188
8.3.4 性能比较 191
8.4 多处理 191
8.5 动态编译 193
8.5.1 介绍性示例 193
8.5.2 二项式期权定价方法 195
8.6 用Cython进行静态编译 199
8.7 在GPU上生成随机数 201
8.8 结语 205
8.9 延伸阅读 205
第9章 数学工具 207
9.1 逼近法 208
9.1.1 回归 208
9.1.2 插值 218
9.2 凸优化 221
9.2.1 全局优化 222
9.2.2 局部优化 223
9.2.3 有约束优化 224
9.3 积分 226
9.3.1 数值积分 228
9.3.2 通过模拟求取积分 228
9.4 符号计算 229
9.4.1 基本知识 229
9.4.2 方程式 230
9.4.3 积分 231
9.4.4 微分 232
9.5 结语 233
9.6 延伸阅读 233
第 10章 推断统计学 235
10.1 随机数 236
10.2 模拟 241
10.2.1 随机变量 241
10.2.2 随机过程 244
10.2.3 方差缩减 256
10.3 估值 259

10.3.1 欧式期权 259
10.3.2 美式期权 263
10.4 风险测度 266
10.4.1 风险价值 266
10.4.2 信用价值调整 270
10.5 结语 272
10.6 延伸阅读 273
第 11章 统计学 275
11.1 正态性检验 276
11.1.1 基准案例 277
11.1.2 现实世界的数据 284
11.2 投资组合优化 289
11.2.1 数据 290
11.2.2 基本理论 291
11.2.3 投资组合优化 294
11.2.4 有效边界 296
11.2.5 资本市场线 297
11.3 主成分分析 300
11.3.1 DAX指数和30种成分股 301
11.3.2 应用PCA 301
11.3.3 构造PCA指数 302
11.4 贝叶斯回归 305
11.4.1 贝叶斯公式 305
11.4.2 PyMC3 306
11.4.3 介绍性示例 307
11.4.4 真实数据 310
11.5 结语 318
11.6 延伸阅读 318
第 12章 Excel集成 321
12.1 基本电子表格交互 322
12.1.1 生成工作簿(.xls) 323
12.1.2 生成工作簿(.xslx) 324
12.1.3 从工作簿中读取 326
12.1.4 使用OpenPyxl 328
12.1.5 使用pandas读写 329
12.2 用Python编写Excel脚本 332

12.2.1 安装DataNitro 333
12.2.2 使用DataNitro 333
12.3 xlwings 342
12.4 结语 342
12.5 延伸阅读 343
第 13章 面向对象和图形用户界面 345
13.1 面向对象 345
13.1.1 Python类基础知识 346
13.1.2 简单的短期利率类 350
13.1.3 现金流序列类 354
13.2 图形用户界面 356
13.2.1 带GUI的短期利率类 356
13.2.2 值的更新 358
13.2.3 带GUI的现金流序列类 360
13.3 结语 362
13.4 延伸阅读 362
第 14章 Web集成 365
14.1 Web基础知识 366
14.1.1 ftplib 366
14.1.2 httplib 368
14.1.3 urllib 369
14.2 Web图表绘制 372
14.2.1 静态图表绘制 372
14.2.2 交互式图表绘制 374
14.2.3 实时图表绘制 375
14.3 快速Web应用 383
14.3.1 交易者的聊天室 384
14.3.2 数据建模 384
14.3.3 Python代码 385
14.3.4 模板 391
14.3.5 样式化 396
14.4 Web服务 397
14.4.1 金融模型 399
14.4.2 实现 400
14.5 结语 406
14.6 延伸阅读 406

第3部分 衍生品分析库
第 15章 估值框架 409
15.1 资产定价基本定理 409
15.1.1 简单示例 409
15.1.2 一般结果 410
15.2 风险中立折现 412
15.2.1 日期建模和处理 412
15.2.2 固定短期利率 413
15.3 市场环境 415
15.4 结语 418
15.5 延伸阅读 419
第 16章 金融模型的模拟 421
16.1 随机数生成 422
16.2 泛型模拟类 423
16.3 几何布朗运动 427
16.3.1 模拟类 427
16.3.2 用例 429
16.4 跳跃扩散 431
16.4.1 模拟类 431
16.4.2 用例 434
16.5 平方根扩散 435
16.5.1 模拟类 435
16.5.2 用例 437
16.6 结语 438
16.7 延伸阅读 440
第 17章 衍生品估值 441
17.1 泛型估值类 441
17.2 欧式行权 445
17.3 估值类 445
17.4 美式行权 451
17.4.1 **小二乘蒙特卡洛方法 451
17.4.2 估值类 453
17.4.3 用例 454
17.5 结语 457
17.6 延伸阅读 458
第 18章 投资组合估值 459
18.1 衍生品头寸 460
18.1.1 类 460
18.1.2 用例 462
18.2 衍生品投资组合 463
18.2.1 类 463
18.2.2 用例 467
18.3 结语 472
18.4 延伸阅读 474
第 19章 波动率期权 475
19.1 VSTOXX数据 476
19.1.1 VSTOXX指数数据 476
19.1.2 VSTOXX期货数据 477
19.1.3 VSTOXX期权数据 479
19.2 模型检验 480
19.2.1 相关市场数据 480
19.2.2 期权建模 481
19.2.3 检验过程 483
19.3 基于VSTOXX的美式期权 487
19.3.1 期权头寸建模 487
19.3.2 期权投资组合 488
19.4 结语 489
19.5 延伸阅读 490
附录A 精选的**佳实践 491
附录B 看涨期权类 499
附录C 日期和时间 503

相关文章
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
153 3
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
131 35
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
98 7
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
129 2
大数据与金融风控:信用评估的新标准
【10月更文挑战第31天】在数字经济时代,大数据成为金融风控的重要资源,特别是在信用评估领域。本文探讨了大数据在金融风控中的应用,包括多维度数据收集、智能数据分析、动态信用评估和个性化风控策略,以及其优势与挑战,并展望了未来的发展趋势。
|
5月前
|
Python对PDF文件页面的旋转和切割
Python对PDF文件页面的旋转和切割
82 3

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等