kubernetes代码阅读-apiserver之list-watch篇

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: apiserver的list-watch代码解读 list-watch,作为k8s系统中统一的异步消息传递方式,对系统的性能、数据一致性起到关键性的作用。今天我想从代码这边探究一下list-watch的实现方式。

apiserver的list-watch代码解读

list-watch,作为k8s系统中统一的异步消息传递方式,对系统的性能、数据一致性 起到关键性的作用。今天我想从代码这边探究一下list-watch的实现方式。并看是否能在后面的工作中优化这个过程。

0. list-watch的需求

输入图片说明

上图是一个典型的Pod创建过程,在这个过程中,每次当kubectl创建了ReplicaSet对象后,controller-manager都是通过list-watch这种方式得到了最新的ReplicaSet对象,并执行自己的逻辑来创建Pod对象。其他的几个组件,Scheduler/Kubelet也是一样,通过list-watch得知变化并进行处理。这是组件的处理端代码:

c.NodeLister.Store, c.nodePopulator = framework.NewInformer(
 c.createNodeLW(), ...(1)
		&api.Node{}, ...(2)
		0, ...(3)
		framework.ResourceEventHandlerFuncs{ ...(4)
			AddFunc: c.addNodeToCache, ...(5)
			UpdateFunc: c.updateNodeInCache,
			DeleteFunc: c.deleteNodeFromCache,
		},
)

其中(1)是list-watch函数,(4)(5)则是相应事件触发操作的入口。

list-watch操作需要做这么几件事:

  1. 由组件向apiserver而不是etcd发起watch请求,在组件启动时就进行订阅,告诉apiserver需要知道什么数据发生变化。Watch是一个典型的发布-订阅模式。
  2. 组件向apiserver发起的watch请求是可以带条件的,例如,scheduler想要watch的是所有未被调度的Pod,也就是满足Pod.destNode=""的Pod来进行调度操作;而kubelet只关心自己节点上的Pod列表。apiserver向etcd发起的watch是没有条件的,只能知道某个数据发生了变化或创建、删除,但不能过滤具体的值。也就是说对象数据的条件过滤必须在apiserver端而不是etcd端完成。
  3. list是watch失败,数据太过陈旧后的弥补手段,这方面详见 基于list-watch的Kubernetes异步事件处理框架详解-客户端部分。list本身是一个简单的列表操作,和其它apiserver的增删改操作一样,不再多描述细节。

1. watch的API处理

既然watch本身是一个apiserver提供的http restful的API,那么就按照API的方式去阅读它的代码,按照apiserver的基础功能实现一文所描述,我们来看它的代码,

  • 关键的处理API注册代码pkg/apiserver/api_installer.go
func (a *APIInstaller) registerResourceHandlers(path string, storage rest.Storage,...

...
 lister, isLister := storage.(rest.Lister)
	watcher, isWatcher := storage.(rest.Watcher) ...(1)
... 
		case "LIST": // List all resources of a kind. ...(2)
			doc := "list objects of kind " + kind
			if hasSubresource {
				doc = "list " + subresource + " of objects of kind " + kind
			}
			handler := metrics.InstrumentRouteFunc(action.Verb, resource, ListResource(lister, watcher, reqScope, false, a.minRequestTimeout)) ...(3)
  1. 一个rest.Storage对象会被转换为watcherlister对象
  2. 提供list和watch服务的入口是同一个,在API接口中是通过 GET /pods?watch=true这种方式来区分是list还是watch
  3. API处理函数是由listerwatcher经过ListResource()合体后完成的。
  • 那么就看看ListResource()的具体实现吧,/pkg/apiserver/resthandler.go
func ListResource(r rest.Lister, rw rest.Watcher,... {
...
		if (opts.Watch || forceWatch) && rw != nil {
			watcher, err := rw.Watch(ctx, &opts) ...(1)
 ....
			serveWatch(watcher, scope, req, res, timeout)
			return
		}
		result, err := r.List(ctx, &opts) ...(2) 
		write(http.StatusOK, scope.Kind.GroupVersion(), scope.Serializer, result, w, req.Request)
  1. 每次有一个watch的url请求过来,都会调用rw.Watch()创建一个watcher,好吧这里的名字和上面那一层的名字重复了,但我们可以区分开,然后使用serveWatch()来处理这个请求。watcher的生命周期是每个http请求的,这一点非常重要。
  2. list在这里是另外一个分支,和watch分别处理,可以忽略。
  • 响应http请求的过程serveWatch()的代码在/pkg/apiserver/watch.go里面
func serveWatch(watcher watch.Interface... {
	server.ServeHTTP(res.ResponseWriter, req.Request)
}

func (s *WatchServer) ServeHTTP(w http.ResponseWriter, req *http.Request) {
	for {
		select {
		case event, ok := <-s.watching.ResultChan():

			obj := event.Object

			if err := s.embeddedEncoder.EncodeToStream(obj, buf); 
...
}

这段的操作基本毫无技术含量,就是从watcher的结果channel中读取一个event对象,然后持续不断的编码写入到http response的流当中。

  • 这是整个过程的图形化描述:

所以,我们的问题就回到了

  1. watcher这个对象,严格来说是watch.Interface的对象,位置在pkg/watch/watch.go中,是怎么被创建出来的?
  2. 这个watcher对象是怎么从etcd中获得变化的数据的?又是怎么过滤条件的?

2. 在代码迷宫中追寻watcher

回到上面的代码追踪过程来看,watcher(watch.Interface)对象是被Rest.Storage对象创建出来的。从上一篇apiserver的基础功能实现 可以知道,所有的Rest.Storage分两层,一层是每个对象自己的逻辑,另一层则是通过通用的操作来搞定,像watch这样的操作应该是通用的,所以我们看这个源代码

  • /pkg/registry/generic/registry/store.go
func (e *Store) Watch(ctx api.Context, options *api.ListOptions) (watch.Interface, error) {
...
	return e.WatchPredicate(ctx, e.PredicateFunc(label, field), resourceVersion)
}

func (e *Store) WatchPredicate(ctx api.Context, m generic.Matcher, resourceVersion string) (watch.Interface, error) {

			return e.Storage.Watch(ctx, key, resourceVersion, filterFunc) ...(1)

	return e.Storage.WatchList(ctx, e.KeyRootFunc(ctx), resourceVersion, filterFunc)
}

果然,我们在(1)这里找到了生成Watch的函数,但这个工作是由e.Storage来完成的,所以我们需要找一个具体的Storage的生成过程,以Pod为例子

  • /pkg/registry/pod/etcd/etcd.go
func NewStorage(opts generic.RESTOptions, k client.ConnectionInfoGetter, proxyTransport http.RoundTripper) PodStorage {
	prefix := "/pods"

	storageInterface := opts.Decorator(
		opts.Storage, cachesize.GetWatchCacheSizeByResource(cachesize.Pods), &api.Pod{}, prefix, pod.Strategy, newListFunc) ...(1)

	store := &registry.Store{
 ...
		Storage: storageInterface, ...(2)
	}
	return PodStorage{
		Pod: &REST{store, proxyTransport}, ...(3)

这(1)就是Storage的生成现场,传入的参数包括了一个缓存Pod的数量。(2)(3)是和上面代码的连接点。那么现在问题就转化为追寻Decorator这个东西具体是怎么生成的,需要重复刚才的过程,往上搜索opts是怎么搞进来的。

  • /pkg/master/master.go - GetRESTOptionsOrDie()

  • /pkg/genericapiserver/genericapiserver.go - StorageDecorator()

  • /pkg/registry/generic/registry/storage_factory.go - StorageWithCacher()

  • /pkg/storage/cacher.go

OK,这样我们就来到正题,一个具体的watch缓存的实现了!

把上面这个过程用一幅图表示:

输入图片说明

3. watch缓存的具体实现

看代码,首要看的是数据结构,以及考虑这个数据结构和需要解决的问题之间的关系。

3.1 Cacher(pkg/storage/cacher.go)

对于cacher这结构来说,我们从外看需求,可以知道这是一个Storage,用于提供某个类型的数据,例如Pod的增删改查请求,同时它又用于watch,用于在client端需要对某个key的变化感兴趣时,创建一个watcher来源源不断的提供新的数据给客户端。

那么cacher是怎么满足这些需求的呢?答案就在它的结构里面:

type Cacher struct { // Underlying storage.Interface.
	storage Interface

	// "sliding window" of recent changes of objects and the current state.
	watchCache *watchCache
	reflector *cache.Reflector

	// Registered watchers.
	watcherIdx int
	watchers map[int]*cacheWatcher
}

略去里面的锁(在看代码的时候一开始要忽略锁的存在,锁是后期为了避免破坏数据再加上去的,不影响数据流),略去里面的一些非关键的成员,现在我们剩下这3段重要的成员,其中

  • storage是连接etcd的,也就是背后的裸存储
  • watchCache并不仅仅是和注释里面说的那样,是个滑动窗口,里面存储了所有数据+滑动窗口
  • watchers这是为每个请求创建的struct,每个watch的client上来后都会被创建一个,所以这里有个map

当然,这3个成员的作用是我看了所有代码后,总结出来的,一开始读代码时不妨先在脑子里面有个定位,然后在看下面的方法时不断修正这个定位。那么,接下来就看看具体的方法是怎么让数据在这些结构里面流动的吧!

  • 初始化方法
func NewCacherFromConfig(config CacherConfig) *Cacher { 
...
					cacher.startCaching(stopCh)
}

func (c *Cacher) startCaching(stopChannel <-chan struct{}) {
...
	if err := c.reflector.ListAndWatch(stopChannel); err != nil {
		glog.Errorf("unexpected ListAndWatch error: %v", err)
	}
}

其他的部分都是陈词滥调,只有startCaching()这段有点意思,这里启动一个go协程,最后启动了c.reflector.ListAndWatch()这个方法,如果对k8s的基本有了解的话,这个其实就是一个把远端数据源源不断的同步到本地的方法,那么数据落在什么地方呢?往上看可以看到

reflector: cache.NewReflector(listerWatcher, config.Type, watchCache, 0),

也就是说从创建cacher的实例开始,就会从etcd中把所有Pod的数据同步到watchCache里面来。这也就印证了watchCache是数据从etcd过来的第一站。

输入图片说明
  • 增删改方法
func (c *Cacher) Create(ctx context.Context, key string, obj, out runtime.Object, ttl uint64) error {
	return c.storage.Create(ctx, key, obj, out, ttl)
}

大部分方法都很无聊,就是短路到底层的storage直接执行。

  • Watch方法
// Implements storage.Interface.
func (c *Cacher) Watch(ctx context.Context, key string, resourceVersion string, filter FilterFunc) (watch.Interface, error) {
	
	initEvents, err := c.watchCache.GetAllEventsSinceThreadUnsafe(watchRV)

	watcher := newCacheWatcher(watchRV, initEvents, filterFunction(key, c.keyFunc, filter), forgetWatcher(c, c.watcherIdx))
	c.watchers[c.watcherIdx] = watcher
	c.watcherIdx++
	return watcher, nil
}

这里的逻辑就比较清晰,首先从watchCache中拿到从某个resourceVersion以来的所有数据——initEvents,然后用这个数据创建了一个watcher返回出去为某个客户端提供服务。

  • List方法
// Implements storage.Interface.
func (c *Cacher) List(ctx context.Context, key string, resourceVersion string, filter FilterFunc, listObj runtime.Object) error {

	filterFunc := filterFunction(key, c.keyFunc, filter)

	objs, readResourceVersion, err := c.watchCache.WaitUntilFreshAndList(listRV)
	if err != nil {
		return fmt.Errorf("failed to wait for fresh list: %v", err)
	}
	for _, obj := range objs {
		if filterFunc(object) {
			listVal.Set(reflect.Append(listVal, reflect.ValueOf(object).Elem()))
		}
	}

}

从这段代码中我们可以看出2件事,一是list的数据都是从watchCache中获取的,二是获取后通过filterFunc过滤了一遍然后返回出去。

输入图片说明

3.2 WatchCache(pkg/storage/watch_cache.go)

这个结构应该是缓存的核心结构,从上一层的代码分析中我们已经知道了对这个结构的需求,包括存储所有这个类型的数据,包括当有新的数据过来时把数据扔到cacheWatcher里面去,总之,提供List和Watch两大输出。

type watchCache struct { // cache is used a cyclic buffer - its first element (with the smallest // resourceVersion) is defined by startIndex, its last element is defined // by endIndex (if cache is full it will be startIndex + capacity). // Both startIndex and endIndex can be greater than buffer capacity - // you should always apply modulo capacity to get an index in cache array.
	cache []watchCacheElement
	startIndex int
	endIndex int // store will effectively support LIST operation from the "end of cache // history" i.e. from the moment just after the newest cached watched event. // It is necessary to effectively allow clients to start watching at now.
	store cache.Store
}

这里的关键数据结构依然是2个

  • cache 环形队列,存储有限个数的最新数据
  • store 底层实际上是个线程安全的hashMap,存储全量数据

那么继续看看方法是怎么运转的吧~

  • 增删改方法
func (w *watchCache) Update(obj interface{}) error {
	event := watch.Event{Type: watch.Modified, Object: object}
	f := func(obj runtime.Object) error { return w.store.Update(obj) }
	return w.processEvent(event, resourceVersion, f)
}


func (w *watchCache) processEvent(event watch.Event, resourceVersion uint64, updateFunc func(runtime.Object) error) error {

	previous, exists, err := w.store.Get(event.Object)
	watchCacheEvent := watchCacheEvent{event.Type, event.Object, prevObject, resourceVersion}
		w.onEvent(watchCacheEvent)
	w.updateCache(resourceVersion, watchCacheEvent)

}

// Assumes that lock is already held for write.
func (w *watchCache) updateCache(resourceVersion uint64, event watchCacheEvent) {
	w.cache[w.endIndex%w.capacity] = watchCacheElement{resourceVersion, event}
	w.endIndex++
}

所有的增删改方法做的事情都差不多,就是在store里面存具体的数据,然后调用processEvent()去增加环形队列里面的数据,如果详细看一下onEvent的操作,就会发现这个操作的本质是落在cacher.go里面:

func (c *Cacher) processEvent(event watchCacheEvent) {
	for _, watcher := range c.watchers {
		watcher.add(event)
	}
}

往所有的watcher里面挨个添加数据。总体来说,我们可以从上面的代码中得出一个结论:cache里面存储的是Event,也就是有prevObject的,对于所有操作都会在cache里面保存,但对于store来说,只存储当下的数据,删了就删了,改了就改了。

输入图片说明
  • WaitUntilFreshAndList()

这里本来应该讨论List()方法的,但在cacher里面的List()实际上使用的是这个,所以我们看这个方法。

func (w *watchCache) WaitUntilFreshAndList(resourceVersion uint64) ([]interface{}, uint64, error) {
	startTime := w.clock.Now()
	go func() {
		w.cond.Broadcast()
	}()

	for w.resourceVersion < resourceVersion {
		w.cond.Wait()
	}
	return w.store.List(), w.resourceVersion, nil
}

这个方法比较绕,前面使用了一堆cond通知来和其他协程通信,最后还是调用了store.List()把数据返回出去。后面来具体分析这里的协调机制。

  • GetAllEventsSinceThreadUnsafe()

这个方法在cacher的创建cacheWatcher里面使用,把当前store里面的所有数据都搞出来,然后把store里面的数据都转换为AddEvent,配上cache里面的Event,全部返回出去。

3.3 CacheWatcher(pkg/storage/cacher.go)

这个结构是每个watch的client都会拥有一个的,从上面的分析中我们也能得出这个结构的需求,就是从watchCache里面搞一些数据,然后写到客户端那边。

// cacherWatch implements watch.Interface
type cacheWatcher struct {
	sync.Mutex
	input chan watchCacheEvent
	result chan watch.Event
	filter FilterFunc
	stopped bool
	forget func(bool)
}

这段代码比较简单,就不去分析方法了,简单说就是数据在增加的时候放到input这个channel里面去,通过filter然后输出到result这个channel里面去。

4. 结语

这里的代码分析比较冗长,但从中可以得出看代码的一般逻辑:

  • 把数据结构和需求对比着看
  • 碰到逻辑复杂的画个图来进行记忆
  • 在分析的时候把想到的问题记录下来,然后在后面专门去考虑

这里我看完代码后有这些问题:

  • 这个cache机制是list-watch操作中最短的板吗?
  • 在实际生产中,对这List和Wath的使用频率和方式是怎么样的?显然这两者存在竞争关系
  • 目前的数据结构是否是最优的?还有更好的方式吗?
  • 需要一个单元测试来对性能进行测试,然后作为调优的基础
  • etcd v3的一些代码对我们的机制有什么影响?这个目录在/pkg/storage/etcd3里面
本文转自掘金-kubernetes代码阅读-apiserver之list-watch篇
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
4月前
|
缓存 Kubernetes API
K8S 性能优化 - K8S APIServer 调优
K8S 性能优化 - K8S APIServer 调优
|
24天前
|
Kubernetes 负载均衡 监控
在K8S中,apiserver的高可用是如何实现的?
在K8S中,apiserver的高可用是如何实现的?
|
4月前
|
Kubernetes 搜索推荐 应用服务中间件
通过keepalived+nginx实现 k8s apiserver节点高可用
通过keepalived+nginx实现 k8s apiserver节点高可用
259 17
|
4月前
|
存储 Kubernetes Cloud Native
云原生|kubernetes|apiserver审计日志的开启
云原生|kubernetes|apiserver审计日志的开启
136 0
|
存储 JSON Kubernetes
一文窥探 Kubernetes ApiServer
Hello folks, 作为 Kubernetes 编排生态中最重要的核心组件之一,kube-apiserver 用于集群管理的 REST API 接口,包括身份验证和授权、数据验证和集群状态更改等以及其他模块之间数据交互和通信的枢纽。
90 0
|
14天前
|
存储 Kubernetes 负载均衡
CentOS 7.9二进制部署K8S 1.28.3+集群实战
本文详细介绍了在CentOS 7.9上通过二进制方式部署Kubernetes 1.28.3+集群的全过程,包括环境准备、组件安装、证书生成、高可用配置以及网络插件部署等关键步骤。
95 3
CentOS 7.9二进制部署K8S 1.28.3+集群实战
|
14天前
|
Kubernetes 负载均衡 前端开发
二进制部署Kubernetes 1.23.15版本高可用集群实战
使用二进制文件部署Kubernetes 1.23.15版本高可用集群的详细教程,涵盖了从环境准备到网络插件部署的完整流程。
29 2
二进制部署Kubernetes 1.23.15版本高可用集群实战
|
14天前
|
存储 Kubernetes 测试技术
k8s使用pvc,pv,sc关联ceph集群
文章介绍了如何在Kubernetes中使用PersistentVolumeClaim (PVC)、PersistentVolume (PV) 和StorageClass (SC) 来关联Ceph集群,包括创建Ceph镜像、配置访问密钥、删除默认存储类、编写和应用资源清单、创建资源以及进行访问测试的步骤。同时,还提供了如何使用RBD动态存储类来关联Ceph集群的指南。
29 7
|
14天前
|
存储 Kubernetes 数据安全/隐私保护
k8s对接ceph集群的分布式文件系统CephFS
文章介绍了如何在Kubernetes集群中使用CephFS作为持久化存储,包括通过secretFile和secretRef两种方式进行认证和配置。
22 5
|
14天前
|
Kubernetes 负载均衡 应用服务中间件
kubeadm快速构建K8S1.28.1高可用集群
关于如何使用kubeadm快速构建Kubernetes 1.28.1高可用集群的详细教程。
32 2