Spark机器学习7·降维模型(scala&python)

简介: ![](http://img3.douban.com/lpic/s28277325.jpg) [Spark机器学习](http://book.douban.com/subject/26593179/) - PCA(主成分分析法,Principal Components Analysis) ...


Spark机器学习

  • PCA(主成分分析法,Principal Components Analysis)
  • SVD(奇异值分解法,Singular Value Decomposition)

http://vis-www.cs.umass.edu/lfw/lfw-a.tgz

0 运行环境

export SPARK_HOME=/Users/erichan/Garden/spark-1.5.1-bin-hadoop2.6
cd $SPARK_HOME
bin/spark-shell --name my_mlib --packages org.jblas:jblas:1.2.4-SNAPSHOT --driver-memory 4G --executor-memory 4G --driver-cores 2

1 抽取特征

1.1 载入脸部数据

val PATH = "/Users/erichan/sourcecode/book/Spark机器学习"
val path = PATH+"/lfw/*"
val rdd = sc.wholeTextFiles(path)
val files = rdd.map { case (fileName, content) => fileName.replace("file:", "") }
println(files.count)

1054

1.2 可视化脸部数据(python)

ipython -pylab
PATH = "/Users/erichan/sourcecode/book/Spark机器学习"
path = PATH+"/lfw/Aaron_Eckhart/Aaron_Eckhart_0001.jpg"
ae = imread(path)
imshow(ae)

Aaron_Eckhart_0001

tmpPath = "/tmp/aeGray.jpg"
aeGary = imread(tmpPath)
imshow(aeGary, cmap=plt.cm.gray)

Aaron_Eckhart_0001_gray

1.3 提取脸部图片作为向量

1.3.1 载入图片
import java.awt.image.BufferedImage
def loadImageFromFile(path: String): BufferedImage = {
    import javax.imageio.ImageIO
    import java.io.File
    ImageIO.read(new File(path))
}

val aePath = PATH+"/lfw/Aaron_Eckhart/Aaron_Eckhart_0001.jpg"
val aeImage = loadImageFromFile(aePath)
1.3.2 转换灰度、改变尺寸
def processImage(image: BufferedImage, width: Int, height: Int): BufferedImage = {
    val bwImage = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_GRAY)
    val g = bwImage.getGraphics()
    g.drawImage(image, 0, 0, width, height, null)
    g.dispose()
    bwImage
}

val grayImage = processImage(aeImage, 100, 100)

import javax.imageio.ImageIO
import java.io.File
ImageIO.write(grayImage, "jpg", new File("/tmp/aeGray.jpg"))

aeGray

1.3.3 提取特征向量
def getPixelsFromImage(image: BufferedImage): Array[Double] = {
    val width = image.getWidth
    val height = image.getHeight
    val pixels = Array.ofDim[Double](width * height)
    image.getData.getPixels(0, 0, width, height, pixels)
    // pixels.map(p => p / 255.0)         // optionally scale to [0, 1] domain
}

// put all the functions together
def extractPixels(path: String, width: Int, height: Int): Array[Double] = {
    val raw = loadImageFromFile(path)
    val processed = processImage(raw, width, height)
    getPixelsFromImage(processed)
}

val pixels = files.map(f => extractPixels(f, 50, 50))
println(pixels.take(10).map(_.take(10).mkString("", ",", ", ...")).mkString("\n"))

1.0,1.0,1.0,1.0,1.0,1.0,2.0,1.0,1.0,1.0, ...

247.0,173.0,159.0,144.0,139.0,155.0,32.0,7.0,4.0,5.0, ...
253.0,254.0,253.0,253.0,253.0,253.0,253.0,253.0,253.0,253.0, ...
242.0,242.0,246.0,239.0,238.0,239.0,225.0,165.0,140.0,167.0, ...
47.0,221.0,205.0,46.0,41.0,154.0,127.0,214.0,232.0,232.0, ...
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ...
75.0,76.0,72.0,72.0,72.0,74.0,71.0,78.0,54.0,26.0, ...
25.0,27.0,24.0,22.0,26.0,27.0,19.0,16.0,22.0,25.0, ...
240.0,240.0,240.0,240.0,240.0,240.0,240.0,240.0,240.0,240.0, ...
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ...

import org.apache.spark.mllib.linalg.Vectors
val vectors = pixels.map(p => Vectors.dense(p))
vectors.setName("image-vectors")
vectors.cache

1.4 正则化

import org.apache.spark.mllib.feature.StandardScaler
val scaler = new StandardScaler(withMean = true, withStd = false).fit(vectors)

val scaledVectors = vectors.map(v => scaler.transform(v))

2 训练降维模型

2.1 前k个主成分

import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.distributed.RowMatrix
val matrix = new RowMatrix(scaledVectors)
val K = 10
val pc = matrix.computePrincipalComponents(K)
val rows = pc.numRows
val cols = pc.numCols
println(rows, cols)

(2500,10)

2.2 可视化特征脸

import breeze.linalg.DenseMatrix
val pcBreeze = new DenseMatrix(rows, cols, pc.toArray)
import breeze.linalg.csvwrite
import java.io.File
csvwrite(new File("/tmp/pc.csv"), pcBreeze)
pc = np.loadtxt("/tmp/pc.csv", delimiter=",")
print(pc.shape)
def plot_gallery(images, h, w, n_row=2, n_col=5):
    """Helper function to plot a gallery of portraits"""
    plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
    for i in range(n_row * n_col):
        plt.subplot(n_row, n_col, i + 1)
        plt.imshow(images[:, i].reshape((h, w)), cmap=plt.cm.gray)
        plt.title("Eigenface %d" % (i + 1), size=12)
        plt.xticks(())
        plt.yticks(())

plot_gallery(pc, 50, 50)

8_3

3 使用降维模型

3.1 PCA投影(图像矩阵x主成分矩阵)

val projected = matrix.multiply(pc)
println(projected.numRows, projected.numCols)
println(projected.rows.take(5).mkString("\n"))

3.2 PCA与SVD

val svd = matrix.computeSVD(10, computeU = true)
println(s"U dimension: (${svd.U.numRows}, ${svd.U.numCols})")
println(s"S dimension: (${svd.s.size}, )")
println(s"V dimension: (${svd.V.numRows}, ${svd.V.numCols})")

U dimension: (1054, 10)

S dimension: (10, )
V dimension: (2500, 10)

def approxEqual(array1: Array[Double], array2: Array[Double], tolerance: Double = 1e-6): Boolean = {
    // note we ignore sign of the principal component / singular vector elements
    val bools = array1.zip(array2).map { case (v1, v2) => if (math.abs(math.abs(v1) - math.abs(v2)) > 1e-6) false else true }
    bools.fold(true)(_ & _)
}
println(approxEqual(Array(1.0, 2.0, 3.0), Array(1.0, 2.0, 3.0)))
println(approxEqual(Array(1.0, 2.0, 3.0), Array(3.0, 2.0, 1.0)))
println(approxEqual(svd.V.toArray, pc.toArray))

true

false
true

// compare projections
val breezeS = breeze.linalg.DenseVector(svd.s.toArray)
val projectedSVD = svd.U.rows.map { v =>
    val breezeV = breeze.linalg.DenseVector(v.toArray)
    val multV = breezeV :* breezeS
    Vectors.dense(multV.data)
}
projected.rows.zip(projectedSVD).map { case (v1, v2) => approxEqual(v1.toArray, v2.toArray) }.filter(b => true).count

4 评价降维模型

4.1 评估SVD的k值

val sValues = (1 to 5).map { i => matrix.computeSVD(i, computeU = false).s }
val svd300 = matrix.computeSVD(300, computeU = false)
val sMatrix = new DenseMatrix(1, 300, svd300.s.toArray)
csvwrite(new File("/tmp/s.csv"), sMatrix)
s = np.loadtxt("/tmp/s.csv", delimiter=",")
print(s.shape)
plot(s)

8_4

plot(cumsum(s))
plt.yscale('log')

8_5

目录
相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
44 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
14天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
31 2
|
16天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
32 1
|
16天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
40 1
|
22天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
33 3
|
27天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
30 1
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
机器学习/深度学习 分布式计算 大数据
Spark机器学习之推荐引擎
spark是现在非常流行的一个计算框架,本文重要是用spark框架做推荐系统的实现。
3730 0
|
机器学习/深度学习 分布式计算 Apache
Spark机器学习3·推荐引擎(spark-shell)
![](http://img3.douban.com/lpic/s28277325.jpg) [Spark机器学习](http://book.douban.com/subject/26593179/) ### 准备环境 - jblas https://gcc.
2705 0
|
24天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
69 2
ClickHouse与大数据生态集成:Spark & Flink 实战
下一篇
无影云桌面