keras 迁移学习inception_v3,缺陷检测

简介:

from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense
from keras import backend as K
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from keras.preprocessing import image
from keras.preprocessing.image import img_to_array
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from keras.utils import to_categorical
from keras.applications import inception_v3
from keras.layers import GlobalAveragePooling2D
from keras.models import Model
import matplotlib.pyplot as plt
import imutils
import numpy as np
import argparse
import random
import pickle
import cv2
import os
from PIL import Image
import matplotlib
matplotlib.use("Agg")

# 获取该路径下所有图片
path = list(imutils.paths.list_images(r'C:\Users\Desktop\guangdong\train'))

imagePaths = sorted(path)
random.shuffle(imagePaths)

name_dic = {'正常':'norm','不导电':'defect1','擦花':'defect2','横条压凹':'defect3','桔皮':'defect4','漏底':'defect5',
'碰伤':'defect6','起坑':'defect7','凸粉':'defect8','涂层开裂':'defect9','脏点':'defect10','其他':'defect11'}

# 将其他文件夹中,名称都改为其他
other_list_1 = os.listdir(r'C:\Users\Desktop\guangdong\train\guangdong_round1_train2_20180916\guangdong_round1_train2_20180916\瑕疵样本\其他')
other_list = other_list_1[1:]

other_dic = { '伤口':'其他', '划伤':'其他', '变形':'其他', '喷流':'其他', '喷涂碰伤':'其他', '打白点':'其他',
'打磨印':'其他','拖烂':'其他', '杂色':'其他', '气泡':'其他', '油印':'其他', '油渣':'其他',
'漆泡':'其他', '火山口':'其他', '碰凹':'其他', '粘接':'其他', '纹粗':'其他', '角位漏底':'其他',
'返底':'其他', '铝屑':'其他', '驳口':'其他'}

# 打印出name_dic里的英文部分,手动复制,再在每个后面添加‘:’及相应的数字
name_dic.values()
digit_dir = {'norm':0, 'defect1':1, 'defect2':2, 'defect3':3, 'defect4':4, 'defect5':5, 'defect6':6, 'defect7':7, 'defect8':8,
'defect9':9, 'defect10':10, 'defect11':11}

# 将图片resize成inception_v3需要的(299,299)大小,并转化成array
labels = []
data =[]
for imagePath in imagePaths:
img = Image.open(imagePath)
img = img.resize((299,299))
img = img_to_array(img)
data.append(img)
label_gbk = imagePath.split('\\')[-1].split('2')[0]
if label_gbk in other_list:
label_gbk = other_dic[label_gbk]
label_english = name_dic[label_gbk]
label = digit_dir[label_english]
print(label_gbk,':',label_english,':',label)
labels.append(label)

# 像素归一化(有利于加速收敛)
labels = np.array(labels)
data = np.array(data, dtype="float") / 255.0
# 标签one-hot
labels = to_categorical(labels)

x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)
# 数据增强
train_aug = ImageDataGenerator(rotation_range=25, width_shift_range=0.1,height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,
horizontal_flip=True, fill_mode="nearest",preprocessing_function=inception_v3.preprocess_input)
# inception_v3基础模型,include_top=False就是要修改原模型的最后一层
base_model = inception_v3.InceptionV3(weights='imagenet',include_top=False)

x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(units=1024,activation='relu')(x)
predictions = Dense(units=12,activation='softmax')(x)
model = Model(inputs=base_model.input, output=predictions)

base_model.summary()
model.summary()

# 不训练基础层
for layer in base_model.layers:
layer.trainable = False


model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])

# batch_size最好选2的n次方,参考的是内存格式
history_tl = model.fit_generator(generator=train_aug.flow(x=x_train,y=y_train,batch_size=32),validation_data=(x_test, y_test),
steps_per_epoch=len(x_train)//32,epochs=10,verbose=1)


model.save()
目录
相关文章
|
3月前
|
机器学习/深度学习
CNN网络编译和训练
【8月更文挑战第10天】CNN网络编译和训练。
93 20
|
3月前
|
API 异构计算
4.3.2 图像分类ResNet实战:眼疾识别——模型构建
这篇文章介绍了如何使用飞桨框架中的ResNet50模型进行眼疾识别的实战,通过5个epoch的训练,在验证集上达到了约96%的准确率,并提供了模型构建、训练、评估和预测的详细代码实现。
|
6月前
|
机器学习/深度学习 算法 Serverless
YoLo_V4模型训练过程
YoLo_V4模型训练过程
95 0
|
PyTorch 算法框架/工具
ShuffleNet v2网络结构复现(Pytorch版)
ShuffleNet v2网络结构复现(Pytorch版)
ShuffleNet v2网络结构复现(Pytorch版)
|
机器学习/深度学习 编解码 自然语言处理
基于EasyCV复现ViTDet:单层特征超越FPN
ViTDet其实是恺明团队MAE和ViT-based Mask R-CNN两个工作的延续。MAE提出了ViT的无监督训练方法,而ViT-based Mask R-CNN给出了用ViT作为backbone的Mask R-CNN的训练技巧,并证明了MAE预训练对下游检测任务的重要性。而ViTDet进一步改进了一些设计,证明了ViT作为backone的检测模型可以匹敌基于FPN的backbone(如SwinT和MViT)检测模型。
|
机器学习/深度学习 监控 算法
了解YOLO算法:快速、准确的目标检测技术
了解YOLO算法:快速、准确的目标检测技术
3135 0
|
机器学习/深度学习 算法
Resnet图像识别入门——Softmax分类是如何工作的
softmax作为一个分类器,它只是把重要的信息变得更重要了而已。
Resnet图像识别入门——Softmax分类是如何工作的
|
搜索推荐 TensorFlow 数据处理
【推荐系统】TensorFlow复现论文DeepCrossing特征交叉网络结构
【推荐系统】TensorFlow复现论文DeepCrossing特征交叉网络结构
123 1
【推荐系统】TensorFlow复现论文DeepCrossing特征交叉网络结构
|
计算机视觉
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(二)
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(二)
140 0
|
机器学习/深度学习 计算机视觉 索引
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(一)
目标检测无痛涨点新方法 | DRKD蒸馏让ResNet18拥有ResNet50的精度(一)
540 0
下一篇
无影云桌面