如何在Jupyter Notebook中使用Python虚拟环境?

简介: 如何在使用Jupyter Notebook时,解决Python虚拟环境间的切换问题?本文一步步帮你拆解。希望你能够避免踩坑的痛苦,把更多的时间花在愉快的编程上。
img_dddb09045abd7e5327d7adfe24d39102.jpe

如何在使用Jupyter Notebook时,解决Python虚拟环境间的切换问题?本文一步步帮你拆解。希望你能够避免踩坑的痛苦,把更多的时间花在愉快的编程上。

痛点

Python目前有两个主版本并存,这很让人苦恼。

一般人对于软件,总是抱持着“喜新厌旧”的心态。见到小红点儿,就忍不住升级。然而对Python来说,这条规律不大适用。

虽然Python 3有许多优于Python 2的特性,但是Python 2的生态系统更为完善,支持的包更多。因为生态系统内部的依赖关系,许多软件包的运行说明会直接指定“仅适用于Python 2.7版本”。

所以,你会在不同的应用场景下切换这两种Python版本。

我本人比较懒,哪个版本支持的软件包多,更适合我使用,我就用哪个。所以,我安装Anaconda这个Python集成运行环境的时候,选择的是2.7版本。

但是近几天,我遇到了点儿麻烦。

为了进一步学习和掌握学Tensorflow,我买了本书。

img_2ea8a03844ca7000fb9c8c22c00c1c40.jpe

这本书配套代码的调试环境,是Jupyter Notebook,Python版本是3.6。

我自然不可能删除掉原先安装的Anaconda,重装一个3.6版本。那样我日常工作就无法进行了。

我选择的方式,是安装虚拟环境。

虚拟

在虚拟环境里,各种软件包的版本,都由你来指定。它们和系统默认Python环境是相互隔离的,因此互不干扰。

img_9feb6dc689075f890993e1413c8384f9.jpe

我给这个用于学习Python 3版本Tensorflow的虚拟环境起了个好记的名字,叫做tfpy3。

进入终端环境,使用Anaconda的环境创建命令,一行代码就可以创建成功。

conda create -n tfpy3 python=3
img_0541d86db1f4b0ac217e02b54ef8af38.jpe

我在~/learn/实验目录下创建了一个名为tensorflow的文件夹。创建好后进入。

cd learn/tensorflow

下面我们呼唤刚才创建的虚拟环境:

source activate tfpy3

这时你会发现终端提示符前面出现了特定虚拟环境标识。

img_94b65a6a6b287deace3200ee530f12c9.jpe

虚拟环境顺利加载。

在这个虚拟环境下,我们就可以安装针对Python 3.6的最新版Tensorflow了。

pip install tensorflow

好了,1.3.0版本tensorflow安装成功。下面我们就呼叫Jupyter Notebook,来编码吧!

jupyter notebook

咦?为什么创建新笔记本的选项中,只有默认的Python 2和后来安装过的R?

img_f568d3b4f11fece3f3c7944cc769a146.jpe

tfpy3虚拟环境哪里去了?根本找不到!

插件

头痛半晌,突然想起古人那句:

吾尝终日而思矣,不如须臾之所学也。

对啊,上网搜!

查询了一下,很快发现了解决方案。原来为了让Jupyter Notebook支持虚拟运行环境,需要在Anaconda里安装一个插件。

回到终端下面,用C-c退出目前正在运行的Jupyter Notebook Server,然后执行:

conda install nb_conda

再重新开启Jupyter Notebook:

jupyter notebook
img_4aed3db9152f613417b1c180d9a56c26.jpe

这下我们就能看到差别了——除了最新安装设定的tfpy3外,之前用Anaconda设置过的其他虚拟环境也都可以在此选择使用。太棒了!

我们选择刚刚创建的tfpy3环境。

执行:

import tensorflow as tf
tf.VERSION

第二行语句是反馈tensorflow的版本。

img_d800c5401860ad9549db7e4b03f6e90c.jpe

1.3.0,没错!这就是刚刚我们安装的最新Tensorflow版本。

下面就是愉快的编码时间了。加油!

讨论

你在使用Python的过程中,遇到过切换版本的问题吗?你是怎么解决的?有没有更为便捷的方法?你更喜欢Python 2还是3?为什么?欢迎留言,分享给大家,我们一起交流讨论。

如果你对我的文章感兴趣,欢迎点赞,并且微信关注和置顶我的公众号“玉树芝兰”(nkwangshuyi)。

如果本文可能对你身边的亲友有帮助,也欢迎你把本文通过微博或朋友圈分享给他们。让他们一起参与到我们的讨论中来。

延伸阅读

如何用《玉树芝兰》入门数据科学?

数据科学相关文章合集(玉树芝兰)

目录
相关文章
|
2月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
315 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
机器学习/深度学习 数据可视化 Docker
Python环境
Python环境
36 3
|
1月前
|
弹性计算 Linux iOS开发
Python 虚拟环境全解:轻松管理项目依赖
本文详细介绍了 Python 虚拟环境的概念、创建和使用方法,包括 `virtualenv` 和 `venv` 的使用,以及最佳实践和注意事项。通过虚拟环境,你可以轻松管理不同项目的依赖关系,避免版本冲突,提升开发效率。
86 3
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
【10月更文挑战第4天】「Mac上学Python 5」入门篇5 - Jupyter 环境配置与高效使用技巧
本篇将介绍如何在Mac系统上安装和配置Jupyter,并详细介绍Jupyter Notebook的一些常用“神奇函数”。Jupyter是一个支持交互式计算的工具,广泛用于数据分析、机器学习等领域,通过学习本篇,用户将能够在Python项目中高效使用Jupyter Notebook。
75 3
【10月更文挑战第4天】「Mac上学Python 5」入门篇5 - Jupyter 环境配置与高效使用技巧
|
2月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
420 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
2月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
485 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
2月前
|
Ubuntu
Ubuntu学习笔记(七):ubuntu下jupyter指定虚拟环境
本文介绍了如何在Ubuntu系统下使用Anaconda和Jupyter Notebook指定并切换不同的虚拟环境。
104 0
Ubuntu学习笔记(七):ubuntu下jupyter指定虚拟环境
|
2月前
|
Python Windows
利用Python在Win10环境下实现拨号上网
利用Python在Win10环境下实现拨号上网
44 4
|
2月前
|
TensorFlow 算法框架/工具 虚拟化
python开发先创建虚拟环境呀
python开发先创建虚拟环境呀
23 1
|
2月前
|
网络安全 开发者 Python
VSCode远程切换Python虚拟环境
VSCode远程切换Python虚拟环境
86 1