Jupyter Notebook如何切换Anaconda虚拟环境

简介: Jupyter Notebook如何切换Anaconda虚拟环境

前言


Jupyter Notebook是一款我本人喜欢的软件,因为在切换conda的虚拟环境遇到了问题,特此写下这篇笔记来记录错误。切换虚拟环境需要用到一个插件nb_conda。


一、首先要注意的问题?


第一首先要看Anaconda的镜像源设置,这里我设置的是清华源,但是在安装的过程中总是会出现错误,设置为默认的下载源才可以。


# 设置为默认的下载源
conda config --remove-key channels


书写命令方面有问题的话可以看我的另一篇博文: Anaconda的一些常用操作.


二、安装插件


在基础环境里安装插件nb_conda


conda install nb_conda


安装完插件之后,主页就会出现Conda选项


bde581d099064a95b3ca9261651171ec.png

三、在剩下所有需要的虚拟环境中安装jupyter

# 进入我自己的虚拟环境
# 
conda activate tf
# 安装jupyter
#
conda install jupyter


之后,重新启动即可。

打开笔记本,在Kernel——Change kernel中就可以切换虚拟环境了。


78643d1bf08e48798926773d0e9f3d3d.png

四、好用的插件


这个插件可以改变字体大小、拼写检查、代码行号、自动pep8等等功能

经过尝试,pip安装没什么用,只能用conda安装。注意兼容性问题。

# 通过pip安装
#
pip install jupyter_contrib_nbextensions
# 通过conda安装
#
conda install -c conda-forge jupyter_contrib_nbextensions
jupyter contrib nbextension install --user 

安装过程中的常见错误详见参考文章。

参考文章:Jupyter Notebook切换conda虚拟环境.


总结


以上就是全部内容啦。

相关文章
|
6月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
456 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
5月前
|
IDE 开发工具 Python
魔搭notebook在web IDE下,使用jupyter notebook,python扩展包无法更新升级
魔搭notebook在web IDE下,使用jupyter notebook,python扩展包无法更新升级,不升级无法使用,安装python扩展包的时候一直停留在installing
161 4
|
8月前
|
机器学习/深度学习 数据采集 数据可视化
Python/Anaconda双方案加持!Jupyter Notebook全平台下载教程来袭
Jupyter Notebook 是一款交互式编程与数据科学分析工具,支持40多种编程语言,广泛应用于机器学习、数据清洗和学术研究。其核心优势包括实时执行代码片段、支持Markdown文档与LaTeX公式混排,并可导出HTML/PDF/幻灯片等格式。本文详细介绍了Jupyter Notebook的软件定位、特性、安装方案(Anaconda集成环境与原生Python+PIP安装)、首次运行配置及常见问题解决方案,帮助用户快速上手并高效使用该工具。
|
数据采集 机器学习/深度学习 数据可视化
使用Jupyter Notebook进行数据分析:入门与实践
【6月更文挑战第5天】Jupyter Notebook是数据科学家青睐的交互式计算环境,用于创建包含代码、方程、可视化和文本的文档。本文介绍了其基本用法和安装配置,通过一个数据分析案例展示了如何使用Notebook进行数据加载、清洗、预处理、探索、可视化以及建模。Notebook支持多种语言,提供直观的交互体验,便于结果呈现和分享。它是高效数据分析的得力工具,初学者可通过本文案例开始探索。
1197 3
|
Ubuntu
Ubuntu学习笔记(七):ubuntu下jupyter指定虚拟环境
本文介绍了如何在Ubuntu系统下使用Anaconda和Jupyter Notebook指定并切换不同的虚拟环境。
350 0
Ubuntu学习笔记(七):ubuntu下jupyter指定虚拟环境
|
Python
Jupyter Notebook又一利器nbterm,在终端玩notebook!
Jupyter Notebook又一利器nbterm,在终端玩notebook!
295 4
|
机器学习/深度学习 Ubuntu Linux
【机器学习 Azure Machine Learning】使用Aure虚拟机搭建Jupyter notebook环境,为Machine Learning做准备(Ubuntu 18.04,Linux)
【机器学习 Azure Machine Learning】使用Aure虚拟机搭建Jupyter notebook环境,为Machine Learning做准备(Ubuntu 18.04,Linux)
173 4
|
文字识别 异构计算 Python
关于云端Jupyter Notebook的使用过程与感想
在自学Python时,由于家庭电脑使用冲突和设备老旧,转向云端平台。体验了多个服务:1. 魔搭modelscope(最喜欢,赠送资源丰富,社区活跃),2. Colaboratory(免费GPU,但有时重启,建议用阿里云),3. Deepnote(免费环境有限,但GPT-4代码生成功能强大),4. 飞桨aistudio(适合PaddlePaddle用户),5. ModelArts(曾有免费实例,现难找)。综合来看,阿里云的稳定性与服务更优,尤其是魔搭的自动代码修正功能。对于AIGC,推荐魔搭和付费版PAI-DSW。欢迎分享更多云端Jupyter平台体验。
785 1
|
网络安全 数据安全/隐私保护 iOS开发
【Mac os】如何在服务器上启动Jupyter notebook并在本地浏览器Web端环境编辑程序
本文介绍了如何在服务器上启动Jupyter Notebook并通过SSH隧道在本地浏览器中访问和编辑程序的详细步骤,包括服务器端Jupyter的启动命令、本地终端的SSH隧道建立方法以及在浏览器中访问Jupyter Notebook的流程。
823 0
|
Python 数据挖掘 数据可视化
Python数据分析——Pandas与Jupyter Notebook
【6月更文挑战第1天】 本文探讨了如何使用Python的Pandas库和Jupyter Notebook进行数据分析。首先,介绍了安装和设置步骤,然后展示了如何使用Pandas的DataFrame进行数据加载、清洗和基本分析。接着,通过Jupyter Notebook的交互式环境,演示了数据分析和可视化,包括直方图的创建。文章还涉及数据清洗,如处理缺失值,并展示了如何进行高级数据分析,如数据分组和聚合。此外,还提供了将分析结果导出到文件的方法。通过销售数据的完整案例,详细说明了从加载数据到可视化和结果导出的全过程。最后,讨论了进一步的分析和可视化技巧,如销售额趋势、产品销售排名和区域分布,以及