基于深度学习的自然场景文字检测及端到端的OCR中文文字识别

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介:

实现功能

 ●  文字方向检测 0、90、180、270度检测
 ●  文字检测 后期将切换到keras版本文本检测 实现keras端到端的文本检测及识别
 ●  不定长OCR识别

环境部署

Bash
##GPU环境
sh setup.sh
##CPU环境
sh setup-cpu.sh
##CPU python3环境
sh setup-python3.sh
使用环境:python3.6+tensorflow1.7+cpu/gpu

模型训练

 ●  一共分为3个网络
 ●  1. 文本方向检测网络-Classify(vgg16)
 ●  2. 文本区域检测网络-CTPN(CNN+RNN)
 ●  3. EndToEnd文本识别网络-CRNN(CNN+GRU/LSTM+CTC)

文字方向检测-vgg分类

基于图像分类,在VGG16模型的基础上,训练0、90、180、270度检测的分类模型.
详细代码参考angle/predict.py文件,训练图片8000张,准确率88.23%

模型地址

文字区域检测CTPN

支持CPU、GPU环境,一键部署

文本检测训练参考

https://github.com/eragonruan/text-detection-ctpn

OCR 端到端识别:CRNN

ocr识别采用GRU+CTC端到到识别技术,实现不分隔识别不定长文字

提供keras 与pytorch版本的训练代码,在理解keras的基础上,可以切换到pytorch版本,此版本更稳定

如果你只是测试一下

运行demo.py  写入测试图片的路径即可,
如果想要显示ctpn的结果,
修改文件./ctpn/ctpn/other.py
的draw_boxes函数的最后部分,
cv2.inwrite('dest_path',img),如此,
可以得到ctpn检测的文字区域框以及图像的ocr识别结果

如果你想训练这个网络

1 对ctpn进行训练

 ●  定位到路径--./ctpn/ctpn/train_net.py
 ●  预训练的vgg网络路径VGG_imagenet.npy将预训练权重下载下来,pretrained_model指向该路径即可, 此外整个模型的预训练权重checkpoint
 ●  ctpn数据集还是百度云数据集下载完成并解压后,将.ctpn/lib/datasets/pascal_voc.py 文件中的pascal_voc 类中的参数self.devkit_path指向数据集的路径即可

2 对crnn进行训练

 ●  keras版本 ./train/keras_train/train_batch.py  model_path--指向预训练权重位置 MODEL_PATH---指向模型训练保存的位置keras模型预训练权重
 ●  pythorch版本./train/pytorch-train/crnn_main.py

parser.add_argument(
    '--crnn',
    help="path to crnn (to continue training)",
    default=预训练权重的路径,看你下载的预训练权重在哪啦)
parser.add_argument(
    '--experiment',
    help='Where to store samples and models',
    default=模型训练的权重保存位置,这个自己指定)

识别结果展示

文字检测及OCR识别结果

e38fbca179f9a4fbd0b796412744f5ea2ebe2b92

主要是因为训练的时候,只包含中文和英文字母,因此很多公式结构是识别不出来的

看看纯文字的

f999b15558e50f9d420ee8c3bceedb2c8bfce6ce

可以看到,对于纯文字的识别结果还是阔以的呢,感觉可以在crnn网络在加以改进,现在的crnn中的cnn有点浅,并且rnn层为单层双向+attention,目前正在针对这个地方进行改动,使用迁移学习,以restnet为特征提取层,使用多层双向动态rnn+attention+ctc的机制,将模型加深,目前正在进行模型搭建,结果好的话就发上来。


原文发布时间为:2018-09-29

本文来自云栖社区合作伙伴“大数据挖掘DT机器学习”,了解相关信息可以关注“大数据挖掘DT机器学习”。

相关文章
|
30天前
|
机器学习/深度学习 文字识别 自然语言处理
OCR技术:解锁文字识别的无限可能
OCR(光学字符识别)技术是数字化浪潮中的关键工具,可将纸质文档、手写笔记或复杂背景下的文字图像转化为可编辑文本。本文从图像采集、预处理、字符识别到文本校正,全面解析OCR技术的原理,并探讨其在智能办公、智慧交通、便捷生活等领域的广泛应用。未来,OCR将与自然语言处理、计算机视觉等技术深度融合,推动智能化和综合化发展。通过开放生态系统和政策支持,开发者可探索更多创新场景,如古籍数字化、盲人阅读等,为社会带来更多价值。
173 57
|
5月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
237 22
|
6月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
459 6
|
2月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
72 8
|
2月前
|
文字识别 BI
【工具教程】批量PDF和图片OCR识别指定区域文字自动改图片名字,多个区域一次性批量识别改名批量重命名
本内容介绍了一款用于企业档案、医院病历及办公文件管理的图片和PDF文字识别工具。通过框选识别区域,软件可批量提取关键信息,实现文件重命名或导出为表格,极大提升管理效率。支持图片与PDF两种模式,操作简单,适用于合同、病历、报告等场景。提供详细步骤指导,包含区域设置、文件导入、批量处理及结果校验等功能。
242 8
|
3月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
4月前
|
人工智能 编解码 文字识别
谷歌放大招!多模态模型PaliGemma 2 Mix上线:通吃问答+OCR+检测等多项视觉理解任务,28B参数无需额外加载模型
PaliGemma 2 Mix 是谷歌DeepMind发布的多任务视觉语言模型,支持图像描述、OCR、目标检测等功能,适用于文档理解、科学问题解答等场景。
158 2
|
4月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5月前
|
人工智能 文字识别 API
moonshot-v1-vision-preview:月之暗面Kimi推出多模态视觉理解模型,支持图像识别、OCR文字识别、数据提取
moonshot-v1-vision-preview 是月之暗面推出的多模态图片理解模型,具备强大的图像识别、OCR文字识别和数据提取能力,支持API调用,适用于多种应用场景。
410 6
moonshot-v1-vision-preview:月之暗面Kimi推出多模态视觉理解模型,支持图像识别、OCR文字识别、数据提取
|
3月前
|
文字识别 UED Python
对双栏 | 单双栏混合 | 图表文字混合的复杂布局的图片OCR识别(对布局复杂的整个pdf进行OCR识别)
这个故事告诉我们要多尝试不同的库和引擎,尤其是需求比较偏门或者少见的时候。同一个方向不同的库所擅长的领域是不一样的。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

热门文章

最新文章