转载:linux下大数据人工智能自动化脚本定时任务模板

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:


转自:

https://mp.weixin.qq.com/s/mXXJmDqtv7PyqglN9ekvNQ



本文针对有初级sql及python人工智能开发基础,需要执行定时任务的初学人员。


       假设在工作中,要执行一个任务,大致要求如下:

       一、每月执行一次定时任务;

       二、用hive处理数据,并下载;

       三、用python读取数据,送入机器学习算法训练,预测结果,保存结果;

       四、读取预测结果,上传到数据库指定位置,并按月分区


       (一)、关于定时任务crontab,命令网上可以搜到很多用法。在这里有一个坑需要注意,就是直接执行shell脚本时用到的python环境路径,可能与定时任务的python路径不同,导致执行脚本时报错,找不到模块。这里有一个小方法,写一个python程序test.py。


import sys

print(sys.path)


       python test.py与crontab -e各执行一次,就可以看到两次路径是否相同了。还有一点,就是关于注册信息的问题,

kinit -kt /home/accunt/cluster_keytab/accunt.keytab accunt中的accunt是你自己的账户,没有这句话,程序也会报错。所以建议专门写一个定时任务,每隔几个小时执行一次该命令。


       (二)、程序中经常会涉及到变量,比较常见的是时间变量,这样才能做到自动化,train_month_t=$(date +%Y%m -d '-1 month')这句话意思是,获取执行程序时的月份的前一个月,‘$’是定义一个变量,用$train_month_t传入sql语句中。exportHIVE_SKIP_SPARK_ASSEMBLY=true; 这句话的作用是在下载数据时,保证数据能够下载齐全。


       (三)、为了降低shell脚本的篇幅,可以将python部分以子文件形式执行。这里为了防止在定时任务时,python路径不统一,使用python的环境路径执行程序。通过sys.argv[1]将参数$py_month传进去。这里的月份形式是'201808',传进去是字符串格式。


       (四)、在数据库里建表,并将通过人工智能预测好的数据,上传到指定分区。


下面是模板内容:


#!/bin/bash

kinit -kt /home/accunt/cluster_keytab/accunt.keytab accunt


echo "***************************"


train_month_t=$(date +%Y%m -d '-1 month')

echo $train_month_t


echo "*************start*************"


sql_train="

create table if not exists test.t_test

(a string, 

b string)

row format delimited fields terminated by '\t' 

lines terminated by '\n'

stored as textfile;

set hive.exec.dynamic.partition.mode=nonstrict;

insert overwrite table test.t_test 

select a,b

from product.t_test 

where day=concat('$train_month_t','01');

"


echo $sql_train >./train.sql

kinit -kt /home/accunt/cluster_keytab/accunt.keytab accunt


hive -f ./train.sql


export HIVE_SKIP_SPARK_ASSEMBLY=true;

hive -e "set hive.cli.print.header=true;

select distinct a,b from test.t_test;" >./train.csv


echo "*************train sql successful************"


kinit -kt /home/accunt/cluster_keytab/accunt.keytab accunt


./python ./train_pred.py $py_month


echo "*************py successful************"


load_sql="

create table if not exists test.result 

(a string, 

b string) 

partitioned by (month string)

row format delimited fields terminated by '\t' 

lines terminated by '\n'

stored as textfile

tblproperties('skip.header.line.count'='1');


LOAD DATA LOCAL INPATH './preds_$load_month.csv'

into table test.result PARTITION (month='$load_month');

"

echo $load_sql>./load.sql

kinit -kt /home/accunt/cluster_keytab/accunt.keytab accunt


hive -f ./load.sql


echo "*************load_sql successful************"


echo "*************successful************"


       至此,一个简单的大数据人工智能预测分析脚本模板完成了,希望能有所帮助,并指出不足之处,共同进步!





转自:

https://mp.weixin.qq.com/s/mXXJmDqtv7PyqglN9ekvNQ

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
探索人工智能与大数据的融合之道####
— 本文旨在探讨人工智能(AI)与大数据如何协同工作,以推动技术创新和产业升级。通过分析二者的基本概念、核心技术及应用场景,揭示它们相互促进的内在机制,并展望未来发展趋势。文章指出,AI提供了智能化处理数据的能力,而大数据则为AI提供了海量的训练资源,两者结合将开启无限可能。 ####
|
20天前
|
人工智能 算法 搜索推荐
探索人工智能与大数据的融合之道####
本文深入探讨了人工智能(AI)与大数据之间的紧密联系与相互促进的关系,揭示了二者如何共同推动科技进步与产业升级。在信息爆炸的时代背景下,大数据为AI提供了丰富的学习材料,而AI则赋予了大数据分析前所未有的深度与效率。通过具体案例分析,本文阐述了这一融合技术如何在医疗健康、智慧城市、金融科技等多个领域展现出巨大潜力,并对未来发展趋势进行了展望,强调了持续创新与伦理考量的重要性。 ####
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与大数据的融合之美####
【10月更文挑战第29天】 身处信息技术飞速发展的时代,人工智能与大数据如同两颗璀璨的星辰,在科技的夜空中交相辉映,共同推动着社会进步与变革的浪潮。本文旨在揭开AI与大数据深度融合的神秘面纱,探讨这一融合如何引领技术前沿,激发创新活力,并展望其在未来世界中的无限可能。通过深入浅出的解析,展现技术背后的逻辑与魅力,邀请读者一同踏上这场科技与智慧的探索之旅。 ####
63 2
|
25天前
|
存储 人工智能 大数据
物联网、大数据、云计算、人工智能之间的关系
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。
192 0
|
25天前
|
Ubuntu Linux Shell
Linux 系统中的代码类型或脚本类型内容
在 Linux 系统中,代码类型多样,包括 Shell 脚本、配置文件、网络配置、命令行工具和 Cron 定时任务。这些代码类型广泛应用于系统管理、自动化操作、网络配置和定期任务,掌握它们能显著提高系统管理和开发的效率。
|
29天前
|
运维 监控 Shell
深入理解Linux系统下的Shell脚本编程
【10月更文挑战第24天】本文将深入浅出地介绍Linux系统中Shell脚本的基础知识和实用技巧,帮助读者从零开始学习编写Shell脚本。通过本文的学习,你将能够掌握Shell脚本的基本语法、变量使用、流程控制以及函数定义等核心概念,并学会如何将这些知识应用于实际问题解决中。文章还将展示几个实用的Shell脚本例子,以加深对知识点的理解和应用。无论你是运维人员还是软件开发者,这篇文章都将为你提供强大的Linux自动化工具。
|
2月前
|
运维 Java Linux
【运维基础知识】Linux服务器下手写启停Java程序脚本start.sh stop.sh及详细说明
### 启动Java程序脚本 `start.sh` 此脚本用于启动一个Java程序,设置JVM字符集为GBK,最大堆内存为3000M,并将程序的日志输出到`output.log`文件中,同时在后台运行。 ### 停止Java程序脚本 `stop.sh` 此脚本用于停止指定名称的服务(如`QuoteServer`),通过查找并终止该服务的Java进程,输出操作结果以确认是否成功。
42 1
|
3月前
|
人工智能 监控 Shell
常用的 55 个 Linux Shell 脚本(包括基础案例、文件操作、实用工具、图形化、sed、gawk)
这篇文章提供了55个常用的Linux Shell脚本实例,涵盖基础案例、文件操作、实用工具、图形化界面及sed、gawk的使用。
569 2
|
2月前
|
存储 Shell Linux
【Linux】shell基础,shell脚本
Shell脚本是Linux系统管理和自动化任务的重要工具,掌握其基础及进阶用法能显著提升工作效率。从简单的命令序列到复杂的逻辑控制和功能封装,Shell脚本展现了强大的灵活性和实用性。不断实践和探索,将使您更加熟练地运用Shell脚本解决各种实际问题
30 0
|
3月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能与大数据的融合应用##
随着科技的快速发展,人工智能(AI)和大数据技术已经深刻地改变了我们的生活。本文将探讨人工智能与大数据的基本概念、发展历程及其在多个领域的融合应用。同时,还将讨论这些技术所带来的优势与挑战,并展望未来的发展趋势。希望通过这篇文章,读者能够对人工智能与大数据有更深入的理解,并思考其对未来社会的影响。 ##