Kafka API实践

简介: 系统学习三步骤走:理解原理、搭建系统、Api练习。从哪里找到Api?Document和git。例如,Kafka在github上的地址github.com/apache/kafka,找到example目录。

系统学习三步骤走:理解原理、搭建系统、Api练习。
从哪里找到Api?Document和git。
例如,Kafka在github上的地址github.com/apache/kafka,找到example目录。
这也算是一个小技巧/apache/xxx,就是XXX的git目录。

Kafka文档路径更好找,就在kafka.apache.org
别用百度搜索,再跳转一次,记住xxx.apache.org就是apache项目的主目录。

Producer 和 Comsumer

如图,Kafka系统中包含三种角色,(1)producer生产者(2)Kafka Cluster消息队列(3)consumer消费者。

在上篇文章中,介绍了Kafka安装,通过启动Kafka server,实现了Kafka Cluster。而生产者消费者,可以通过Api实现写入和读取消息队列。

一、 pom.xml文件,引入依赖

Kafka Api 被包含在Kafka-clients包中,修改pom.xml文件。

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>0.10.0.1</version>
        </dependency>

二、编写Producer

1.Producer 配置

Properties props = new Properties();
props.put("bootstrap.servers", "hbase:9092,datanode2:9092,datanode3:9092");
props.put("acks", "all");
props.put("retries", 3);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
  • bootstrap.servers:kafka server的地址
  • acks:写入kafka时,leader负责一个该partion读写,当写入partition时,需要将记录同步到repli节点,all是全部同步节点都返回成功,leader才返回ack。
  • retris:写入失败时,重试次数。当leader节点失效,一个repli节点会替代成为leader节点,此时可能出现写入失败,当retris为0时,produce不会重复。retirs重发,此时repli节点完全成为leader节点,不会产生消息丢失。
  • batch.size:produce积累到一定数据,一次发送。
  • buffer.memory: produce积累数据一次发送,缓存大小达到buffer.memory就发送数据。
  • linger.ms :当设置了缓冲区,消息就不会即时发送,如果消息总不够条数、或者消息不够buffer大小就不发送了吗?当消息超过linger时间,也会发送。
  • key/value serializer:序列化类。

2.KafkaProducer

  • KafkaProducer
import org.apache.kafka.clients.producer.KafkaProducer;

Properties props = getConfig();
Producer<String, String> producer =
                        new KafkaProducer<String, String>(props);
  • Producer是一个接口,声明了同步send和异步send两个重要方法。
    public Future<RecordMetadata> send(ProducerRecord<K, V> record);
    public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback);
  • ProducerRecord 消息实体类,每条消息由(topic,key,value,timestamp)四元组封装。一条消息key可以为空和timestamp可以设置当前时间为默认值。
ProducerRecord record = new ProducerRecord<String, String>
("exam2", Integer.toString(i), Integer.toString(i));//exam2为topic
producer.send(record);

异步发送

long startTime = System.currentTimeMillis();
producer.send(new ProducerRecord<>(topic,messagekey,messageValue), 
        new DemoCallBack(startTime, messagekey, messageValue));

DemoCallBack异步回调接口,包含2个函数,构造函数和onCompletion函数。
返回的对象RecordMetadata包含partition和offset两个信息。

class DemoCallBack implements Callback {

    private final long startTime;
    private final String key;
    private final String message;

    public DemoCallBack(long startTime, String key, String message) {
        this.startTime = startTime;
        this.key = key;
        this.message = message;
    }
    /**
     * @param metadata  The metadata for the record that was sent (i.e. the partition and offset). Null if an error
     *                  occurred.
     * @param exception The exception thrown during processing of this record. Null if no error occurred.
     */
    public void onCompletion(RecordMetadata metadata, Exception exception) {
        long elapsedTime = System.currentTimeMillis() - startTime;
        if (metadata != null) {
            System.out.println(
                "message(" + key + ", " + message + ") sent to partition(" + metadata.partition() +
                    "), " +
                    "offset(" + metadata.offset() + ") in " + elapsedTime + " ms");
        } else {
            exception.printStackTrace();
        }
    }
}

控制台输出结果,能够看出回调函数不是异步执行的。

i:0
i:1
message(0, 0) sent to partition(6), offset(303) in 680 ms
i:2
message(1, 1) sent to partition(9), offset(295) in 126 ms
message(2, 2) sent to partition(8), offset(343) in 53 ms
i:3
message(3, 3) sent to partition(3), offset(331) in 18 ms
i:4
message(4, 4) sent to partition(3), offset(332) in 8 ms
i:5
message(5, 5) sent to partition(0), offset(310) in 22 ms
i:6
message(6, 6) sent to partition(8), offset(344) in 8 ms
i:7
message(7, 7) sent to partition(9), offset(296) in 19 ms
i:8
i:9
message(9, 9) sent to partition(3), offset(333) in 23 ms
message(8, 8) sent to partition(7), offset(287) in 136 ms
i:10
message(10, 10) sent to partition(6), offset(304) in 21 ms

三、编写Consumer

1.Consumer 配置

Properties props = new Properties();
props.put("bootstrap.servers", "hbase:9092,datanode2:9092,datanode3:9092");
props.put("group.id", "testGroup");
props.put("enable.auto.commit", "true");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
  • group.id:testGroup。由于在kafka中,同一组中的consumer不会读取到同一个消息,依靠groud.id设置组名。
  • enable.auto.commit:true。设置自动提交offset。

2.KafkaConsumer

KafkaConsumer

import org.apache.kafka.clients.consumer.KafkaConsumer;

Properties props = getConfig();
consumer = new KafkaConsumer<String, String>(props);

Consumer接口,声明了subscribe和poll两个重要方法。KafkaConsumer实现了Consumer接口。

public void subscribe(Collection<String> topics);
public ConsumerRecords<K, V> poll(long timeout);

可以创建多个consumer线程,并发拉取消息。由于consumer是线程不安全的,合适的做法是每个线程创建并维护一个consumer对象。

自定义KafkaConsumerRunner是一个多线程类,维护一个KafkaConsumer对象。

// Thread to consume kafka data
public static class KafkaConsumerRunner implements Runnable
{
    private final AtomicBoolean closed = new AtomicBoolean(false);
    private final KafkaConsumer<String, String> consumer;
    private final String topic;

    public KafkaConsumerRunner(String topic)
    {
        Properties props = getConfig();
        consumer = new KafkaConsumer<String, String>(props);
        this.topic = topic;
    }

    public void handleRecord(ConsumerRecord record)
    {
        System.out.println("name: " + Thread.currentThread().getName()
                + " ; topic: " + record.topic() + "; partition:"+record.partition()+
                " ; offset" + record.offset() + " ; key: " + record.key() + " ; value: " + record.value());
    }

    public void run()
    {
        try {
            // subscribe
            consumer.subscribe(Arrays.asList(topic));
            while (!closed.get()) {
                //read data
                ConsumerRecords<String, String> records = consumer.poll(1000);
                // Handle new records
                for (ConsumerRecord<String, String> record : records) {
                    handleRecord(record);
                }
            }
        }
        catch (WakeupException e) {
            // Ignore exception if closing
            if (!closed.get()) {
                throw e;
            }
        }
        finally {
            consumer.close();
        }
    }

    // Shutdown hook which can be called from a separate thread
    public void shutdown()
    {
        closed.set(true);
        consumer.wakeup();
    }
}

线程池启动多个consumer线程,

int numConsumers = 3;
final String topic = "exam2";
final ExecutorService executor = Executors.newFixedThreadPool(numConsumers);
final List<KafkaConsumerRunner> consumers = new ArrayList<KafkaConsumerRunner>();
for (int i = 0; i < numConsumers; i++) {
    KafkaConsumerRunner consumer = new KafkaConsumerRunner(topic);
    consumers.add(consumer);
    executor.submit(consumer);
}
执行结果:

name: pool-1-thread-3 ; topic: exam2; partition:9 ; offset445 ; key: 1 ; value: 1
name: pool-1-thread-2 ; topic: exam2; partition:6 ; offset448 ; key: 0 ; value: 0
name: pool-1-thread-3 ; topic: exam2; partition:8 ; offset508 ; key: 2 ; value: 2
name: pool-1-thread-1 ; topic: exam2; partition:3 ; offset495 ; key: 3 ; value: 3
name: pool-1-thread-1 ; topic: exam2; partition:3 ; offset496 ; key: 4 ; value: 4
name: pool-1-thread-1 ; topic: exam2; partition:0 ; offset461 ; key: 5 ; value: 5
name: pool-1-thread-3 ; topic: exam2; partition:8 ; offset509 ; key: 6 ; value: 6
name: pool-1-thread-3 ; topic: exam2; partition:9 ; offset446 ; key: 7 ; value: 7
name: pool-1-thread-3 ; topic: exam2; partition:7 ; offset428 ; key: 8 ; value: 8
name: pool-1-thread-1 ; topic: exam2; partition:3 ; offset497 ; key: 9 ; value: 9
name: pool-1-thread-2 ; topic: exam2; partition:6 ; offset449 ; key: 10 ; value: 10
name: pool-1-thread-3 ; topic: exam2; partition:8 ; offset510 ; key: 11 ; value: 11

观察结果
  1. 保证每个consumer线程消费不同的partition。
  2. partition之间不能保证顺序进行,里如key:1和key:0
  3. 同一个partition内保证顺序性,即offset保证在同一partition内顺序进行。

优雅的关闭子线程

在main函数中,添加hook进程关闭的函数。new Thread 在进程关闭时触发,调用Consumer的shutdown函数,设置while循环的退出条件while (!closed.get())

Runtime.getRuntime().addShutdownHook(new Thread()
{
    @Override
    public void run()
    {
        for (KafkaConsumerRunner consumer : consumers) {
            consumer.shutdown();
        }
        executor.shutdown();
        try {
            executor.awaitTermination(5000, TimeUnit.MILLISECONDS);
        }
        catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("process quit");
    }
});

手动控制offset

//设置由用户触发提交offset
props.put("enable.auto.commit", "false");
for (ConsumerRecord<String, String> record : records) {
    handleRecord(record);
}
consumer.commitAsync();
运行结果:
  1. poll拉取的数据还是顺序返回,不会反复拉取offset的数据。
  2. 重启进程,由于offset没有提交,会重头处理offset。

四、总结

本文测试了kafka提供的Api。
在实际应用中kafka会和spark stream结合,采用流式计算的方式处理kafka中数据。

目录
相关文章
|
6天前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
28 4
|
1月前
|
缓存 测试技术 API
构建高效后端API:实践与哲学
【9月更文挑战第36天】在数字世界的浪潮中,后端API成为了连接用户、数据和业务逻辑的桥梁。本文将深入探讨如何构建一个既高效又灵活的后端API,从设计理念到实际代码实现,带你一探究竟。我们将通过具体示例,展示如何在保证性能的同时,也不失安全性和可维护性。
|
30天前
|
缓存 数据挖掘 API
商品详情API接口的应用实践
本文探讨了商品详情API接口在电商领域的应用实践,介绍了其作为高效数据交互方式的重要性,包括实时获取商品信息、提升用户体验和运营效率。文章详细描述了API接口的特点、应用场景如商品展示、SEO优化、数据分析及跨平台整合,并提出了缓存机制、分页加载、异步加载和错误处理等优化策略,旨在全面提升电商运营效果。
|
2月前
|
存储 JSON API
深入解析RESTful API设计原则与实践
【9月更文挑战第21天】在数字化时代,后端开发不仅仅是编写代码那么简单。它关乎于如何高效地连接不同的系统和服务。RESTful API作为一套广泛采用的设计准则,提供了一种优雅的解决方案来简化网络服务的开发。本文将带你深入了解RESTful API的核心设计原则,并通过实际代码示例展示如何将这些原则应用于日常的后端开发工作中。
|
4天前
|
XML API 网络架构
深入理解RESTful API设计原则与实践
【10月更文挑战第26天】在数字化浪潮中,API(应用程序编程接口)成为连接不同软件组件的桥梁。本文将深入浅出地探讨如何根据REST(Representational State Transfer)原则设计高效、易于维护和扩展的API,同时分享一些实用的代码示例,帮助开发者构建更加健壮和用户友好的服务。
|
27天前
|
消息中间件 NoSQL Kafka
大数据-52 Kafka 基础概念和基本架构 核心API介绍 应用场景等
大数据-52 Kafka 基础概念和基本架构 核心API介绍 应用场景等
56 5
|
1月前
|
XML JSON API
深入浅出:RESTful API 设计实践与最佳应用
【9月更文挑战第32天】 在数字化时代的浪潮中,RESTful API已成为现代Web服务通信的黄金标准。本文将带您一探究竟,了解如何高效地设计和维护一个清晰、灵活且易于扩展的RESTful API。我们将从基础概念出发,逐步深入到设计原则和最佳实践,最终通过具体案例来展示如何将理论应用于实际开发中。无论您是初学者还是有经验的开发者,这篇文章都将为您提供宝贵的指导和灵感。
|
11天前
|
缓存 监控 API
微服务架构下RESTful风格api实践中,我为何抛弃了路由参数 - 用简单设计来提速
本文探讨了 RESTful API 设计中的两种路径方案:动态路径和固定路径。动态路径通过路径参数实现资源的 CRUD 操作,而固定路径则通过查询参数和不同的 HTTP 方法实现相同功能。固定路径设计提高了安全性、路由匹配速度和 API 的可维护性,但也可能增加 URL 长度并降低表达灵活性。通过对比测试,固定路径在性能上表现更优,适合微服务架构下的 API 设计。
|
2月前
|
JSON API 网络架构
掌握RESTful API设计的艺术:从理论到实践
【9月更文挑战第22天】在数字化时代,API已成为连接不同软件和服务的桥梁。本文将引导你了解如何设计高效、可扩展且易于使用的RESTful API,涵盖从基础概念到高级最佳实践的全方位知识。我们将一起探索REST原则、HTTP方法的正确应用、资源命名策略等关键元素,并配以实际代码示例,让你能够将理论转化为实际操作,构建出既符合标准又能应对复杂业务需求的API。
|
25天前
|
存储 前端开发 JavaScript
深入理解Vue3的组合式API及其实践应用
【10月更文挑战第5天】深入理解Vue3的组合式API及其实践应用
66 0