tensorflow object detection API训练公开数据集Oxford-IIIT Pets Dataset

简介:

为了避免不必要的麻烦,先说一下我的系统版本

Python 3.6 tensorflow 1.10 windows 7

object detection API安装

object detection API 安装参见官方的github: https://github.com/tensorflow/models/tree/master/research/object_detection

这里需要特别强调一下,一定要检查一下,下面的python的包都安装了,方法很简单,全部执行一遍

7863eed1899b85c3c17c0c3b0389a415f2527211

coco API安装

windows下面不需要--user选项,Oxford-IIIT Pet 数据集使用coco metrix, 所以下面必须执行这个命令行:

 
  1. pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

在windows下面遇到utf-8编码错误

dcf3e1fa8fe9a5cca0bb513f52107c58899db86e

如下修正:

7f8d93268fdb75d7d6ff5efa85fc40f544f87073

C:\Program Files\Python\Python36\Lib\site-packages\pip\compat\_init_.py

79行改成gbk, utf-8替换为gbk, 不一定是是79行。再次执行即可成功安装

创建训练数据记录tfrecord

下载好Oxford-IIIT Pets Dataset数据集,解压缩到这里

b3277e2f8b8f6ad1e22b2fddd7bed5657d9422c4

然后执行下面的命令行:

43719b4752d98bb509719f568d96e691dd28466f

训练数据成功创建在指定目录:先切换到指定目录,完整的命令行执行

 
  1. D:\tensorflow\models\research>python objectdetection/datasettools/createpettfrecord.py --labelmappath=objectdetection/data/petlabelmap.pbtxt

  2. --datadir=D:/petdata --output-dir=D:\tensorflow\mytrain\data

  3. 还不会看这里:

  4. https://github.com/tensorflow/models/blob/master/research/objectdetection/g3doc/preparing_inputs.md

迁移学习

这步成功以后,就可以开始执行真正的训练啦,等等,别着急,我们是基于预训练模型的迁移学习,所以还有几件事情必须搞定,

下载预训练的tensorflow模型,我这里下载的是

126fd72ef04cb2670e2e4d89d7f0eef6a537cd62

http://download.tensorflow.org/models/objectdetection/ssdmobilenetv1coco201801_28.tar.gz

解压缩到指定目录,我的完整目录结构如下:

fd4dfd8ba3c30d455abe89638c340da5bbb8896b

其实有+加号的表示目录文件夹, - 表示文件

labelmap file来自 D:\tensorflow\models\research\objectdetection\data\petlabelmap.pbtxt pipeline config file来自 D:\tensorflow\models\research\objectdetection\samples\configs\ssdmobilenetv1pets.config

直接copy过来,然后打开

87bc968ff559a58c8efc1538d4e2890707ae2d44

开始修改,把所有【PATH_TO_BE_CONFIGURED】都改到正确路径上来:

ed8489a4ad38cfc3c5dc11a532eab29fa94ee5dc

保存好啦,然后直接执行训练的命令行:

d2d8054d111f2e2da7231426f91eacdeff21c3ca

各个参数选项解释如下:

 


--pipelineconfigpath

训练时候配置目录,所有关于训练各种输入路径、参数模型、参数网络配置,都在这个里面。

--modeldir

训练时候会写文件的目录,训练完成输出的模型保存目录

--numtrainsteps

训练多少个steps

--numeval_steps

多少个eval, 基本上两者要相差10倍以上 steps : eval

--alsologtostderr

表示日志信息

如果遇到这个错误

TypeError: can't pickle dictvalues objects

这样修改,打开model_lib.py

D:\tensorflow\models\research\objectdetection

813461ad57615496032b17390360b6ea5c461a41

继续训练就会很OK

启动tensorboard查看训练过程: CPU 太慢了,半天走一个step

4a8d26ce626d56c935f970b1018c0f606b452466


原文发布时间为:2018-08-27

本文作者:gloomyfish

本文来自云栖社区合作伙伴“OpenCV学堂”,了解相关信息可以关注“OpenCV学堂”。

相关文章
|
7天前
|
编解码 人工智能 缓存
自学记录鸿蒙API 13:实现多目标识别Object Detection
多目标识别技术广泛应用于动物识别、智能相册分类和工业检测等领域。本文通过学习HarmonyOS的Object Detection API(API 13),详细介绍了如何实现一个多目标识别应用,涵盖从项目初始化、核心功能实现到用户界面设计的全过程。重点探讨了目标类别识别、边界框生成、高精度置信度等关键功能,并分享了性能优化与功能扩展的经验。最后,作者总结了学习心得,并展望了未来结合语音助手等创新应用的可能性。如果你对多目标识别感兴趣,不妨从基础功能开始,逐步实现自己的创意。
171 60
|
7天前
|
人工智能 监控 安全
自学记录鸿蒙 API 13:骨骼点检测应用Core Vision Skeleton Detection
骨骼点检测技术能够从图片中识别出人体的关键骨骼点位置,如头部、肩部、手肘等,广泛应用于运动健身指导、游戏交互、医疗辅助、安全监控等领域。我决定深入学习HarmonyOS Next API 13中的Skeleton Detection API,并开发一个简单的骨骼点检测应用。通过理解API核心功能、项目初始化与配置、实现检测功能、构建用户界面,以及性能优化和功能扩展,逐步实现这一技术的应用。未来计划将其应用于健身指导和智能监控领域,探索与其他AI能力的结合,开发更智能的解决方案。如果你也对骨骼点检测感兴趣,不妨一起进步!
130 9
|
3月前
|
机器学习/深度学习 算法 安全
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)
37 0
|
5月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API三种搭建神经网络的方式及以mnist举例实现
使用Keras API构建神经网络的三种方法:使用Sequential模型、使用函数式API以及通过继承Model类来自定义模型,并提供了基于MNIST数据集的示例代码。
65 12
|
5月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API两种训练GAN网络的方式
使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。
54 5
|
5月前
|
TensorFlow API 算法框架/工具
【Tensorflow 2】Keras API+Estimator的使用
本文介绍了在TensorFlow 2中结合Keras API和Estimator API来构建和训练模型的方法,并提供了一个示例流程,包括构建模型、生成数据集、使用Estimator进行训练以及评估模型性能。
50 3
|
5月前
|
TensorFlow 算法框架/工具 Python
【Tensorflow 2】解决'Tensor' object has no attribute 'numpy'
解决'Tensor' object has no attribute 'numpy'
98 3
|
5月前
|
UED 开发工具 iOS开发
Uno Platform大揭秘:如何在你的跨平台应用中,巧妙融入第三方库与服务,一键解锁无限可能,让应用功能飙升,用户体验爆棚!
【8月更文挑战第31天】Uno Platform 让开发者能用同一代码库打造 Windows、iOS、Android、macOS 甚至 Web 的多彩应用。本文介绍如何在 Uno Platform 中集成第三方库和服务,如 Mapbox 或 Google Maps 的 .NET SDK,以增强应用功能并提升用户体验。通过 NuGet 安装所需库,并在 XAML 页面中添加相应控件,即可实现地图等功能。尽管 Uno 平台减少了平台差异,但仍需关注版本兼容性和性能问题,确保应用在多平台上表现一致。掌握正确方法,让跨平台应用更出色。
64 0
|
5月前
|
数据采集 API TensorFlow
简化目标检测流程:深入探讨TensorFlow Object Detection API的高效性与易用性及其与传统方法的比较分析
【8月更文挑战第31天】TensorFlow Object Detection API 是一项强大的工具,集成多种先进算法,支持 SSD、Faster R-CNN 等模型架构,并提供预训练模型,简化目标检测的开发流程。用户只需准备数据集并按要求处理,选择预训练模型进行微调训练即可实现目标检测功能。与传统方法相比,该 API 极大地减少了工作量,提供了从数据预处理到结果评估的一站式解决方案,降低了目标检测的技术门槛,使初学者也能快速搭建高性能系统。未来,我们期待看到更多基于此 API 的创新应用。
43 0
|
5月前
|
API 算法框架/工具
【Tensorflow+keras】使用keras API保存模型权重、plot画loss损失函数、保存训练loss值
使用keras API保存模型权重、plot画loss损失函数、保存训练loss值
42 0