【译Py】2018年8月,GitHub上的Python数据科学明星项目:自动化机器学习、自然语言处理、可视化、机器学习工作流

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介:

919a715aa33452d54a3fd52d2e03360adc9d37fc

Python数据分析

本文是“五个不容忽视的机器学习项目”一文的续篇。和上篇文章相比,这次选出的项目涉及更多数据科学领域,并且都是GitHub上的开源项目,我们为每个项目都附上了Repo、文档和入门指南的链接,并对每个项目进行了简单介绍。
下面一起来了解一下这些新兴的热门Python库吧,希望本文对你的工作能有所帮助:

1. Auto-Keras自动机器学习库
项目链接:https://github.com/jhfjhfj1/autokeras
文档:http://autokeras.com
入门指南:https://autokeras.com/#example
Auto-Keras是用于自动机器学习(AutoML)的开源软件库。自动机器学习的最终目标是让仅拥有一定数据科学知识或机器学习背景的行业专家可以轻松地应用深度学习模型。Auto-Keras提供了很多用于自动研究深度学习模型架构与超参数的函数。

2. Finetune Scikit-Learn风格的自然语言处理模型微调器
项目链接:https://github.com/IndicoDataSolutions/finetune
文档:https://finetune.indico.io
入门指南:https://finetune.indico.io
Finetune提供了“通过生成式预训练改进对语言的理解”的预训练语言模型,并扩充了OpenAI/finetune-language-model库。

3. GluonNLP - 让自然语言处理变得更简单
项目链接:https://github.com/dmlc/gluon-nlp
文档:http://gluon-nlp.mxnet.io
入门指南: https://github.com/dmlc/gluon-nlp#quick-start-guide
GluonNLP可以使文本处理、数据加载及构建神经模型变得更容易,加快自然语言处理研究的速度。

4. animatplot - 基于Matplotlib的Python动图库
项目链接:https://github.com/t-makaro/animatplot
文档:https://animatplot.readthedocs.io/en/latest
入门指南:https://animatplot.readthedocs.io/en/latest/tutorial/getting_started.html
请注意,本库文档里的例子比较简单,本文引用的是该库在GitHub上列出的功能更全、形式更酷的示例图。

3149e9bc38177f1fe387e7ca124fbe2c1ed69efc

animatplot

5. MLflow - 机器学习生命周期的开源平台
项目链接:https://github.com/mlflow/mlflow
文档:https://mlflow.org/docs/latest/index.html
入门指南:https://mlflow.org/docs/latest/quickstart.html
MLflow是用来管理机器学习整体生命周期的开源平台,这个平台提供了以下主要三个功能:

● MLflow Tracking :跟踪实验,以用来记录和比较机器学习的参数。
● MLflow Projects :以可复用、可再现的形式,将机器学习的代码进行打包,以便分享给其他数据科学家或传递给生产环境。
● MLflow Models :管理各类机器学习库中的模型,并部署到不同的模型服务及应用平台。
MLflow通过访问REST API和CLI实现其功能,所以它不依赖于某个库,并且支持多种机器学习库与编程语言,为了使用方便,它还内置了Python API。


原文发布时间为:2018-09-3

本文作者:Matthew Mayo

本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区”。

相关文章
|
16天前
|
人工智能
LangGraph:构建多代理动态工作流的开源框架,支持人工干预、循环、持久性等复杂工作流自动化
LangGraph 是一个基于图结构的开源框架,专为构建状态化、多代理系统设计,支持循环、持久性和人工干预,适用于复杂的工作流自动化。
53 12
LangGraph:构建多代理动态工作流的开源框架,支持人工干预、循环、持久性等复杂工作流自动化
|
18天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
58 33
|
1月前
|
人工智能 监控 数据挖掘
工作流管理趋势:智能化、自动化与无限可能
本文深入探讨了工作流管理的定义、重要性、挑战及优化方法,强调其在提升企业效率、优化资源配置、提高透明度和促进协作等方面的作用。文章还介绍了构建高效工作流管理系统的步骤,包括流程梳理、设定KPIs、选择合适工具等,并分享了成功案例和未来趋势。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习中的自然语言处理
在这篇文章中,我们将深入探讨自然语言处理(NLP)在机器学习中的应用。NLP是人工智能的一个分支,它使计算机能够理解、解释和生成人类语言。我们将通过Python编程语言和一些流行的库如NLTK和spaCy来实现一些基本的NLP任务。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
50 6
|
2月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
38 1
|
2月前
|
监控 安全 测试技术
如何在实际项目中应用Python Web开发的安全测试知识?
如何在实际项目中应用Python Web开发的安全测试知识?
41 4
|
2月前
|
运维 监控 安全
自动化运维的魔法:打造高效DevOps工作流
在软件交付的快车道上,DevOps如同赛车手,而自动化运维则是那辆高性能赛车。本文将揭示如何通过自动化工具和最佳实践,构建一个高效、可靠的DevOps工作流,确保软件交付过程既快速又安全。我们将一起探索从代码提交到部署的每个关键步骤,并展示如何通过实际案例简化这一旅程。
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
57 0