python中那些双下划线开头得函数和变量

简介: python中那些双下划线开头得函数和变量

Python中下划线---完全解读

Python 用下划线作为变量前缀和后缀指定特殊变量

_xxx 不能用from module import *导入

__xxx__系统定义名字

__xxx类中的私有变量名

核心风格:避免用下划线作为变量名的开始。

因为下划线对解释器有特殊的意义,而且是内建标识符所使用的符号,我们建议程序员避免用下划线作为变量名的开始。一般来讲,变量名_xxx被看作是“私有 的”,在模块或类外不可以使用。当变量是私有的时候,用_xxx来表示变量是很好的习惯。因为变量名__xxx__对Python 来说有特殊含义,对于普通的变量应当避免这种命名风格。

“单下划线” 开始的成员变量叫做保护变量,意思是只有类对象和子类对象自己能访问到这些变量;
“双下划线” 开始的是私有成员,意思是只有类对象自己能访问,连子类对象也不能访问到这个数据。

以单下划线开头_foo的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用from xxx import *而导入;以双下划线开头的__foo代表类的私有成员;以双下划线开头和结尾的__foo__代表python里特殊方法专用的标识,如__init__()代表类的构造函数。

现在我们来总结下所有的系统定义属性和方法, 先来看下保留属性:

>>> Class1.__doc__ # 类型帮助信息 'Class1 Doc.' 
>>> Class1.__name__ # 类型名称 'Class1' 
>>> Class1.__module__ # 类型所在模块 '__main__' 
>>> Class1.__bases__ # 类型所继承的基类 (<type 'object'>,) 
>>> Class1.__dict__ # 类型字典,存储所有类型成员信息。
 <dictproxy object at 0x00D3AD70> 

>>> Class1().__class__ # 类型 <class '__main__.Class1'>
>>> Class1().__module__ # 实例类型所在模块 '__main__' 
>>> Class1().__dict__ # 对象字典,存储所有实例成员信息。 {'i': 1234}

接下来是保留方法,可以把保留方法分类:

类的基础方法

序号 目的 所编写代码 Python 实际调用
初始化一个实例 x = MyClass() x.__init__()
字符串的“官方”表现形式 repr(x) x.__repr__()
字符串的“非正式”值 str(x) x.__str__()
字节数组的“非正式”值 bytes(x) x.__bytes__()
格式化字符串的值 format(x, format_spec) x.__format__(format_spec)
  • __init__() 方法的调用发生在实例被创建 之后 。如果要控制实际创建进程,请使用__new__()方法。
  • 按照约定,__repr__()方法所返回的字符串为合法的 Python 表达式。
  • 在调用 print(x) 的同时也调用了__str__() 方法。
  • 由于 bytes 类型的引入而从 Python 3 开始出现。

行为方式与迭代器类似的类

序号 目的 所编写代码 Python 实际调用
遍历某个序列 iter(seq) seq.__iter__()
从迭代器中获取下一个值 next(seq) seq.__next__()
按逆序创建一个迭代器 reversed(seq) seq.__reversed__()
  • 无论何时创建迭代器都将调用 __iter__()方法。这是用初始值对迭代器进行初始化的绝佳之处。
  • 无论何时从迭代器中获取下一个值都将调用__next__() 方法。
  • __reversed__()方法并不常用。它以一个现有序列为参数,并将该序列中所有元素从尾到头以逆序排列生成一个新的迭代器。

计算属性

序号 目的 所编写代码 Python 实际调用
获取一个计算属性(无条件的) x.my_property x.__getattribute__('my_property')
获取一个计算属性(后备) x.my_property x.__getattr__('my_property')
设置某属性 x.my_property = value x.__setattr__('my_property',value)
删除某属性 del x.my_property x.__delattr__('my_property')
列出所有属性和方法 dir(x) x.__dir__()
  • 如果某个类定义了 __getattribute__()方法,在 每次引用属性或方法名称时 Python 都调用它(特殊方法名称除外,因为那样将会导致讨厌的无限循环)。
  • 如果某个类定义了 __getattr__()方法,Python 将只在正常的位置查询属性时才会调用它。如果实例 x 定义了属性color, x.color 将 不会 调用x.__getattr__('color');而只会返回x.color 已定义好的值。
  • 无论何时给属性赋值,都会调用__setattr__()方法。
  • 无论何时删除一个属性,都将调用 __delattr__()方法。
  • 如果定义了 __getattr__()__getattribute__()方法,__dir__()方法将非常有用。通常,调用 dir(x) 将只显示正常的属性和方法。如果__getattr()__方法动态处理color 属性, dir(x) 将不会将 color 列为可用属性。可通过覆盖 __dir__()方法允许将 color 列为可用属性,对于想使用你的类但却不想深入其内部的人来说,该方法非常有益。
序号 目的 所编写代码 Python 实际调用
序列的长度 len(seq) seq.__len__()
了解某序列是否包含特定的值 x in seq seq.__contains__(x)
序号 目的 所编写代码 Python 实际调用
通过键来获取值 x[key] x.__getitem__(key)
通过键来设置值 x[key] = value x.__setitem__(key,value)
删除一个键值对 del x[key] x.__delitem__(key)
为缺失键提供默认值 x[nonexistent_key] x.__missing__(nonexistent_key)

可比较的类

我将此内容从前一节中拿出来使其单独成节,是因为“比较”操作并不局限于数字。许多数据类型都可以进行比较——字符串、列表,甚至字典。如果要创建自己的类,且对象之间的比较有意义,可以使用下面的特殊方法来实现比较。

序号 目的 所编写代码 Python 实际调用
相等 x == y x.__eq__(y)
不相等 x != y x.__ne__(y)
小于 x < y x.__lt__(y)
小于或等于 x <= y x.__le__(y)
大于 x > y x.__gt__(y)
大于或等于 x >= y x.__ge__(y)
布尔上上下文环境中的真值 if x: x.__bool__()

可序列化的类

Python 支持 任意对象的序列化和反序列化。(多数 Python 参考资料称该过程为 “pickling” 和 “unpickling”)。该技术对与将状态保存为文件并在稍后恢复它非常有意义。所有的 内置数据类型 均已支持 pickling 。如果创建了自定义类,且希望它能够 pickle,阅读 pickle 协议 了解下列特殊方法何时以及如何被调用。

序号 目的 所编写代码 Python 实际调用
自定义对象的复制 copy.copy(x) x.__copy__()
自定义对象的深度复制 copy.deepcopy(x) x.__deepcopy__()
在 pickling 之前获取对象的状态 pickle.dump(x, file) x.__getstate__()
序列化某对象 pickle.dump(x, file) x.__reduce__()
序列化某对象(新 pickling 协议) pickle.dump(x, file, protocol_version) x.__reduce_ex__(protocol_version)
控制 unpickling 过程中对象的创建方式 x = pickle.load(file) x.__getnewargs__()
在 unpickling 之后还原对象的状态 x = pickle.load(file) x.__setstate__()

要重建序列化对象,Python 需要创建一个和被序列化的对象看起来一样的新对象,然后设置新对象的所有属性。__getnewargs__()方法控制新对象的创建过程,而__setstate__()方法控制属性值的还原方式。

可在 with 语块中使用的类

with 语块定义了 运行时刻上下文环境;在执行 with 语句时将“进入”该上下文环境,而执行该语块中的最后一条语句将“退出”该上下文环境。

序号 目的 所编写代码 Python 实际调用
在进入 with 语块时进行一些特别操作 with x: x.__enter__()
在退出 with 语块时进行一些特别操作 with x: x.__exit__()

该文件对象同时定义了一个 __enter__()和一个 __exit__()方法。该 __enter__() 方法检查文件是否处于打开状态;如果没有, _checkClosed()方法引发一个例外。
__enter__()方法将始终返回 self —— 这是 with 语块将用于调用属性和方法的对象
在 with 语块结束后,文件对象将自动关闭。怎么做到的?在__exit__()方法中调用了 self.close() .

__exit__()方法将总是被调用,哪怕是在 with 语块中引发了例外。实际上,如果引发了例外,该例外信息将会被传递给 __exit__() 方法。

相关文章
|
14天前
|
索引 Python
Python的变量和简单类型
本文介绍了Python中变量命名规则、常用变量类型及字符串操作。变量命名需遵循字母、数字和下划线组合,不能以数字开头且不可与关键字冲突。字符串支持单引号、双引号或三引号定义,涵盖基本输出、转义字符、索引、拼接等操作。此外,还详细解析了字符串方法如`islower()`、`upper()`、`count()`等,帮助理解字符串处理技巧。
49 15
|
1月前
|
人工智能 Python
[oeasy]python082_变量部分总结_variable_summary
本文介绍了变量的定义、声明、赋值及删除操作,以及Python中的命名规则和常见数据类型。通过示例讲解了字符串与整型的基本用法、类型转换方法和加法运算的区别。此外,还涉及异常处理(try-except)、模块导入(如math和random)及随机数生成等内容。最后总结了实验要点,包括捕获异常、进制转化、变量类型及其相互转换,并简述了编程中AI辅助的应用策略,强调明确目标、分步实施和逐步巩固的重要性。更多资源可在蓝桥、GitHub和Gitee获取。
167 97
|
19天前
|
人工智能 索引 Python
[oeasy]python091_列表_索引_index_中括号_索引函数
本文介绍了Python中列表与字符串的索引及index函数用法。通过range生成列表,使用索引[]访问和修改列表元素,index函数查找元素位置。字符串支持索引访问但不可直接修改。还探讨了16进制数在Python中的表示方法,以及日期、月份等特殊字符的Unicode范围。最后总结了列表与字符串操作的区别,并预告后续内容,提供蓝桥云课、GitHub和Gitee链接供进一步学习。
51 20
|
1月前
|
Python
[oeasy]python086方法_method_函数_function_区别
本文详细解析了Python中方法(method)与函数(function)的区别。通过回顾列表操作如`append`,以及随机模块的使用,介绍了方法作为类的成员需要通过实例调用的特点。对比内建函数如`print`和`input`,它们无需对象即可直接调用。总结指出方法需基于对象调用且包含`self`参数,而函数独立存在无需`self`。最后提供了学习资源链接,方便进一步探索。
61 17
|
19天前
|
存储 程序员 Python
Python 变量和简单数据类型
本文介绍了 Python 编程的基础知识,从创建第一个 Python 文件 `hello_world.py` 开始,讲解了 Python 文件的运行机制及解释器的作用。接着深入探讨了变量的定义、命名规则和使用方法,并通过示例说明如何修改变量值。同时,文章详细解析了字符串的操作,包括大小写转换、变量插入及空白字符处理等技巧。此外,还涵盖了数字运算(整数与浮点数)、常量定义以及注释的使用。最后引用了《Python 之禅》,强调代码设计的美学原则和哲学思想。适合初学者快速掌握 Python 基础语法和编程理念。
|
1月前
|
人工智能 Python
[oeasy]python083_类_对象_成员方法_method_函数_function_isinstance
本文介绍了Python中类、对象、成员方法及函数的概念。通过超市商品分类的例子,形象地解释了“类型”的概念,如整型(int)和字符串(str)是两种不同的数据类型。整型对象支持数字求和,字符串对象支持拼接。使用`isinstance`函数可以判断对象是否属于特定类型,例如判断变量是否为整型。此外,还探讨了面向对象编程(OOP)与面向过程编程的区别,并简要介绍了`type`和`help`函数的用法。最后总结指出,不同类型的对象有不同的运算和方法,如字符串有`find`和`index`方法,而整型没有。更多内容可参考文末提供的蓝桥、GitHub和Gitee链接。
54 11
|
19天前
|
开发框架 Java .NET
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
76 0
|
2月前
|
Python
[oeasy]python073_下划线在python里是什么含义_内部变量_私有变量_系统变量
本文回顾了Python中从模块导入变量和函数的方式,重点讨论了避免本地变量名冲突(local name clashes)的方法。通过`from module import variable as alias`可以为导入的变量重命名,防止冲突。根据PEP8规范,建议避免使用`from module import *`,因为它会导入模块中所有非下划线开头的变量,容易引发冲突。下划线在变量命名中有特殊含义:单个前导下划线表示内部变量,后置下划线用于避免与关键字冲突,双下划线前后包围表示系统变量。总结了下划线的不同用法及其作用。下次将继续探讨更实用的编程技巧。
46 3
|
2月前
|
人工智能 自然语言处理 Shell
[oeasy]python070_如何导入模块_导入模块的作用_hello_dunder_双下划线
本文介绍了如何在Python中导入模块及其作用,重点讲解了`__hello__`模块的导入与使用。通过`import`命令可以将外部模块引入当前环境,增强代码功能。例如,导入`__hello__`模块后可输出“Hello world!”。此外,还演示了如何使用`help()`和`dir()`函数查询模块信息,并展示了导入多个模块的方法。最后,通过一个实例,介绍了如何利用`jieba`、`WordCloud`和`matplotlib`模块生成词云图。总结来说,模块是封装好的功能部件,能够简化编程任务并提高效率。未来将探讨如何创建自定义模块。
47 8
|
3月前
|
C语言 Python
Python学习:内建属性、内建函数的教程
本文介绍了Python中的内建属性和内建函数。内建属性包括`__init__`、`__new__`、`__class__`等,通过`dir()`函数可以查看类的所有内建属性。内建函数如`range`、`map`、`filter`、`reduce`和`sorted`等,分别用于生成序列、映射操作、过滤操作、累积计算和排序。其中,`reduce`在Python 3中需从`functools`模块导入。示例代码展示了这些特性和函数的具体用法及注意事项。

热门文章

最新文章