深度学习之 TensorFlow(四):卷积神经网络

简介: 基础概念:  卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量。卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直接将图片作为网络的输入,自动提取特征,并且对图形的变形等具有高度不变形。

基础概念:

  卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量。卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直接将图片作为网络的输入,自动提取特征,并且对图形的变形等具有高度不变形。在语音分析和图像识别领域有重要用途。

  卷积:卷积是泛函分析中的一种积分变换的数学方法,通过两个函数 f 和 g 生成第三个函数的一种数学算子,表征函数 f 与 g 经过翻转和平移的重叠部分的面积。设函数 f,g 是定义在 \mathbb {R} ^{n} 上的可测函数,fg的卷积记作f*g,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数,也就是:

 

具体解释下:

  1.已知两函数f(t)和g(t)。下图第一行两图分别为f(t)和g(t)。

  2.首先将两个函数都用来表示,从而得到f()和g()。将函数g()向右移动t个单位,得到函数g(-t)的图像。将g(-t)翻转至纵轴另一侧,得到g(-(-t))即g(t-)的图像。下图第二行两图分别为f()和g(t-)。

  3.由于非常数(实际上是时间变量),当时间变量(以下简称“时移”)取不同值时,g(t-\tau )能沿着轴“滑动”。下图第三四五行可理解为“滑动”。

  4.让从-∞滑动到+∞。两函数交会时,计算交会范围中两函数乘积的积分值。换句话说,我们是在计算一个滑动的的加权总和(weighted-sum)。也就是使用g(t-\tau )当做加权函数,来对 f()取加权值。

  最后得到的波形(未包含在此图中)就是fg的卷积。

 

  神经网络的基本组成包括输入层、隐藏层、输出层。卷积神经网络的特点在于隐藏层分为卷积层和池化层。卷积层通过一块块的卷积核在原始图像上平移来提取特征,每一个特征就是一个特征映射;而池化层通过汇聚特征后稀疏参数来减少要学习的参数,降低网络的复杂度,池化层最常见的包括最大值池化 (max pooling) 和平均值池化 (average pooling) 。

  卷积核在提取特征映射时的动作称为 padding,其有两种方式,即 SAME 和 VALID。由于移动步长(Stride)不一定能整除整张图的像素宽度,我们把不越过边缘取样称为 Vaild Padding,取样的面积小于输入图像的像素宽度;越过边缘取样称为 Same Padding, 取样的面积和输入图像的像素宽度一致。

 

几种不同的卷积神经网络:

1.LeNet

  • 输入层:32 x 32
  • 卷积层:3个
  • 下采样层:2个 
  • 全连接层:1个
  • 输出层:10个类别(数字0~9的概率)。

(1)输入层。输入图像尺寸为32 x 32。

(2)卷积层:卷积运算的主要目的是使原信号特征增强,并且降低噪音。

(3)下采样层:下采样层主要是想降低网络训练参数及模型的过拟合程度。通常有以下两种方式。

  • 最大池化(max pooling):在选中的区域中找最大的值作为采样后的值。
  • 平均值池化(mean pooling):把选中区域中的平均值作为采样后的值。

(4)全连接层:计算输入向量和权重向量的点积,再加上一个偏置,随后将其传递给 sigmoid 函数,产生单元 i 的一个状态。

 

2.AlexNet

  AlextNet 由5个卷积层、5个池化层、3个全连接层、大约5000万个可调参数组成。

优点:使用了如下方法

  •  防止过拟合:Dropout、数据增强。
  • 非线性激活函数:ReLU。
  • 大数据训练:120万 ImageNet 图像数据。
  • GPU 实现、LRN规范化层的使用。

 

此外还有 VGGNet、GoogLeNet、ResNet 等卷积神经网络模型,这里不再一一叙述。

 

 

***讲下解决过拟合的方法。

1)数据增强:增加训练数据是避免过拟合的好方法,并且能提升算法的准确性。当训练数据有限的时候,可以通过一些变换从已有的训练数据集中生成一些新数据。来扩大训练数据量。通常采用的变形方法以下几种:

  • 水平翻转图像(又称反射变化,filp)。
  • 从原始图像随机地平移变换出一些图像。
  • 给图像增加一些随机的光照(又称光照、彩色变换、颜色抖动)。

(2)Dropout。以 Alexnet 为例,Alexnet 是以0.5 的概率将每个隐层神经元的输出设置为0 。以这种方式被抑制的神经元既不参加前向传播,也不参与反向传播。因此,每次输入一个样本,就相当于该神经网络尝试了一个新结构,但是所有这些结果之间共享权重。因为神经元不能依赖于其他神经元而存在,所以这种技术降低了神经元复杂的互适应关系。因此,网络需要被迫学习更为健壮的特征,这些特征在结合其他神经元的一些不同随机子集时很有用。Dropout 使收敛所需的迭代次数大致增加了一倍。

目录
打赏
0
0
0
0
3
分享
相关文章
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
142 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
173 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
109 11
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
536 55
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
602 5
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
248 3
下一篇
oss创建bucket