塑云科技:性能突破,基于KafKa+OTS+MaxCompute 完成了一次物联网系统技术重构

简介: 塑云科技:性能突破,基于KafKa+OTS+MaxCompute 完成了一次物联网系统技术重构 背景:创业团队,专注于氢能燃料电池生态链的运营支撑,当前主要的业务组成为新能源车整车实时运营监控分析,加氢站实时运营监控分析,车辆安全运营支撑。

塑云科技:性能突破,基于KafKa+OTS+MaxCompute 完成了一次物联网系统技术重构

背景:创业团队,专注于氢能燃料电池生态链的运营支撑,当前主要的业务组成为新能源车整车实时运营监控分析,加氢站实时运营监控分析,车辆安全运营支撑。

 

系统面临的主要挑战:高频数据的实时解析、存储、分析。拿整车实时运营监控分析来讲,每辆车以每秒1K的原始报文上报,要求做到秒级延迟的解析应答以及入库。同时需要针对解析后的每车每秒33K的报文进行快速查询以及后继的分析。考虑到未来车辆接入的量,需要在考虑性能的基础上以最经济的方式进行系统设计。按照每车每秒33K的解析后报文,每车每月预计生成30G的报文数据(车辆按照每天运行10小时计算)。

 

原有系统存在的问题如下(罗列部分):

1.       系统架构中未对OLAP和OLTP系统的范围进行清晰界定,使用JAVA程序对OTS的表定时进行任务统计,代码复杂并且性能极差并且影响到服务器上其他OLTP系统的正常运行。

2.       存储的解析后的报文数据,未针对OTS的计价规则进行针对性优化,一个大JSON串中冗余的KEY过多,KEY的长度超长(平均30个字符串)。

3.       OTS(阿里云tablestore)按照公司进行分表设计,存在单个实例下表数量超过OTS限制(64表)的风险。

4.       OTS以车月作为分区键,单个分区(30G)过大,超过OTS建议的1G推荐大小。

5.       OTS单车的分区连续分布未做散列,不能在物理机器层面最优并发性能。

6.       没有针对最核心的读取场景(按天按车查询报文)进行编码层面的优化。


在做系统优化之前,首先要做的就是架构层面的梳理,对产品中需要使用到的中间件产品的适用范围进行了明确的界定。数据在各个环节的流转进行明确的定义如下:

d00aa19ce5a3cb925276aa37f2e600d971844c9f

这里主要的改进

一、引入KAFKA作为多个环节异步解耦的基础支撑,提升对终端的报文快速回复。

二、引入MaxCompute 作为OLAP系统的基础支撑。将复杂的业务分析转交给MaxCompute 来处理。

三、针对OTS的计价原则,对OTS的模型进行了重构(此文暂不讨论)

 

MaxCompute作为阿里云强大的数据分析利器,因为之前的经历相对比较熟悉。所以在这次的改造中特别针对性能、成本、可运维等方面做了较多的思考。

这里首先讲一讲基于成本的考虑。首先根据数据的使用频度将数据切分为在线、离线、归档三类。车辆终端上报的报文数据作为归档数据选择OSS的归档存储。在线数据设定N月的生命周期,主要包括报文解析之后需要实时查询的数据,离线数据主要包括基于解析的报文数据进行离线分析统计之后形成的各类中间结果、报表数据。

针对数据的使用场景界定数据类型之后,这里主要考虑离线数据使用OSS还是MaxCompute(ODPS)或者是OTS来存储的问题。根据三类产品的存储计算成本我做了一个粗略对比如下:

5f57d83a815a615619a7e2a0d630f48112e6a31b

这里已经考虑通过压缩的方式存储OTS减少计价存储的情况。当然MaxCompute的计价是按照实际压缩存储之后的容量计算。MaxCompute官方文档介绍的是5:1的压缩比,而我们的数据因为本身的特点,实测可以到7~8 :1的压缩比,所以最后数据方案反倒是MaxCompute直接存储离线数据性价比最高。同时也符合数据靠近计算的原则。

经过测试使用OTS外部表作为数据载体的计算性能一般(当前MaxCompute对OTS的外部表的Map Reduce计算直觉觉得是基于OTS的分片,并且缺少分区的概念,每次都是基于全表扫描,这点可以从MaxCompute的任务详情可以观测出来)。

技术选型确定以后,剩下的是如何利用MaxCompute为业务提供可靠、稳定数据服务。这里特别需要强调的是数仓的建模、数据集成、工作运维的使用。

数据集成主要这方面主要体现MYSQL跟MaxCompute的双向同步,这个不需要特别讲,主要是设计上需要考虑到数据的重复同步的设计即可。关于工作运维则是更多地体现在对任务的运行状况的监控以及重跑的支持。

数仓的建模主要考虑的还是成本和模型的复用。首先针对海量、质量不高的底层数据进行分层建模。保证上层的业务模型只依赖中间结果。这里带来的直接效益就是计算成本的大幅下降(每每看到有些开发同事动不动就对着一个上百G的原始表做各种查询的时候,心是痛的…).其次是中间模型为系统补数带来更快的性能,毕竟因为一些业务或者数据的原因需要重跑部分报表,这个时候如果需要重新扫描原始数据的时候,首先就是费钱,非常费钱。其次就是耗时,非常耗时。

在离线统计分析的重构完成之后,系统充分利用MaxCompute的并行计算能力,并且借助其强大的函数尤其是窗口函数的支持,我们实现比较不错的分析能力,客户的一个核心部件的数据统计分析,之前一个专业的工作人员分析一个部分需要耗时一天,还容易出错。借助平台的分析能力,可以在10分钟内计算完将近1000个部件的数据分析工作。类似下面的曲线图分析每次数据波动期间的均值,之前几乎无法人工计算,即便是JAVA编码也是一个非常复杂的编码工作,通过平台的支持,系统处理得游刃有余。

42de544d32b6637f27e6c78d756223733041bbd8

一次计流水账式的总结,且当做一次经验的沉淀
相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
3月前
|
存储 人工智能 大数据
云栖2025|阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
阿里云在云栖大会发布“湖流一体”数智平台,推出DLF-3.0全模态湖仓、实时计算Flink版升级及EMR系列新品,融合实时化、多模态、智能化技术,打造AI时代高效开放的数据底座,赋能企业数字化转型。
833 0
|
5月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
436 4
|
3月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
5月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
5月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
12月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
500 1
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
391 1
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
1343 9
|
消息中间件 监控 Kafka
实时计算 Flink版产品使用问题之处理Kafka数据顺序时,怎么确保事件的顺序性
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 物联网平台