最小生成树——Prim算法

简介: 最小生成树是图这一数据结构里最常讨论的方面之一。   先用一下几个概念回忆一下什么是最小生成树:         连通图:任意两个结点之间都有一个路径相连         生成树(Spannirng Tree):连通图的一个极小的连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边         最小生成树(Minimum Spannirng Tree):连通图的最小代价的生成树(各边的权值之和最小)   最小生成树性质(MST性质):         设G=(V,E)是一个连通网络,U是顶点集V的一个真子集。

 

最小生成树是图这一数据结构里最常讨论的方面之一。

 

先用一下几个概念回忆一下什么是最小生成树:

        连通图:任意两个结点之间都有一个路径相连

        生成树(Spannirng Tree):连通图的一个极小的连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边

        最小生成树(Minimum Spannirng Tree):连通图的最小代价的生成树(各边的权值之和最小)

 

最小生成树性质(MST性质)

        设G=(V,E)是一个连通网络,U是顶点集V的一个真子集。若(u,v)是G中一条“一个端点在U中(例如:u∈U),另一个端点不在U中的边(例如:v∈V-U),且(u,v)具有最小权值,则一定存在G的一棵最小生成树包括此边(u,v)。

        证明http://fdcwqmst.blog.163.com/blog/static/164061455201010392833100/

 

构造最小生成树的两种方法:Prim算法Kruskal算法。它们都利用了MST性质;都使用贪心策略,一次生成一条权值最小的“安全边”。

 

下面看一下Prim算法的具体内容。

 

算法思想:

        1. 从图中选取一个节点作为起始节点(也是树的根节点),标记为已达;初始化所有未达节点到树的距离为到根节点的距离;

        2. 从剩余未达节点中选取到树距离最短的节点i,标记为已达;更新未达节点到树的距离(如果节点到节点i的距离小于现距离,则更新);

        3. 重复步骤2直到所有n个节点均为已达。

 

上述过程应该是很清晰的,下面看一下Prim算法的C语言实现: 

 1 #define N 10            // 定义最大节点数,实际有几个是几个
 2 #define MAXDIST 100        // 最大距离,表示两个节点间不可达, 为了输入方便设置成100,实际可用INT_MAX
 3 
 4 // 为了计算方便传入的距离矩阵用指针数组的格式,n是节点数
 5 int Prim(int (*map)[N], int n)
 6 {
 7     int i, j;
 8     int minDist, minIndex, totalWeight;
 9     int *visited, *parent, *dist;    // 分别保存节点的已达标志,父节点,到树的距离
10 
11     // 申请空间并清零
12     visited = (int *)malloc(n * sizeof(int));
13     parent = (int *)malloc(n * sizeof(int));
14     dist = (int *)malloc(n * sizeof(int));
15 
16     memset(visited, 0, n * sizeof(int));
17     memset(parent, 0, n * sizeof(int));
18     memset(dist, 0, n * sizeof(int));
19 
20     // 初始化,设置节点0为根节点
21     visited[0] = 1;
22     totalWeight = 0;
23 
24     // 初始化未达节点到树的距离
25     for (i = 1; i < n; ++i)
26     {
27         parent[i] = 0;
28         dist[i] = map[0][i];
29     }
30 
31     printf("\nEdge\tWeight\n");
32 
33     // n - 1次循环找出n - 1条边
34     for (i = 0; i < n - 1; ++i)
35     {
36         minDist = MAXDIST;
37         minIndex = i;
38 
39         // 找出到树距离最小的节点
40         for (j = 1; j < n; ++j)
41         {
42             if (visited[j] == 0 && dist[j] < MAXDIST)
43             {
44                 minDist = dist[j];
45                 minIndex = j;
46             }
47         }
48 
49         if (minIndex == i)        // 所有节点到树的距离都为MAXDIST,说明不是连通图,返回
50         {
51             printf("This is not a connected graph!\n");
52             return MAXDIST;
53         }
54 
55         // 标记并输出找到的节点和边
56         visited[minIndex] = 1;
57         totalWeight += minDist;
58         printf("%d-->%d\t%3d\n", parent[minIndex], minIndex, map[parent[minIndex]][minIndex]);
59 
60         // 更新剩余节点到树的距离
61         for (j = 1; j < n; ++j)
62         {
63             if (visited[j] == 0 && map[j][minIndex] < dist[j])
64             {
65                 parent[j] = minIndex;
66                 dist[j] = map[j][minIndex];
67             }
68         }
69     }
70 
71     printf("\nTotal Weight: %d\n\n", totalWeight);
72 
73     return totalWeight;
74 }
View Code

 

再写一个测试函数验证一下功能:

 1 int main()
 2 {
 3     int map[N][N];
 4     int i, j;
 5     int n, tmp;
 6 
 7     printf("Num of nodes: ");
 8     scanf("%d", &n);
 9 
10     printf("Distance matrix (lower triangular) : ");
11     for (i = 1; i < n; ++i)
12     {
13         map[i][i] = 0;
14 
15         for (j = 0; j < i; ++j)
16         {
17             scanf("%d", &tmp);
18             map[i][j] = tmp;
19             map[j][i] = tmp;
20         }
21     }
22 
23     Prim(map, n);
24 
25     return 0;
26 }
View Code

 

测试图的距离矩阵如下:

因为无向图矩阵是对称的,所以程序中设置只要输入下三角数据即可,也就是下面这些:

也就是输入的数据是这些: 4 2 5 3 4 1 100 3 100 6 100 100 2 2 4

 

下面是程序运行截图:

 

算法效率 O(n^2):

        很明显对于每个节点(初始节点除外),都要进行此次遍历查找距离树最近的节点 O(n),和一次更新操作O(n),所以总的时间复杂度为O(n^2)。

 

优化:

        上述过程中,冗余操作在于对已经标记为可达的节点,在每次遍历查找和更新时,都还要访问一次。优化的关键就在于如何避免这种操作。

 

        使用优先队列(Priority Queue),或叫堆(Heap),将每次更新的节点加入到队列中,而且保证队列有一定的大小顺序(每次调整的时间复杂度O(logn))。而查找具有最小距离的元素,只需要取队列首个元素再调整队列(O(logn))。所以取出n个节点,总的时间复杂度为O(nlogn)。

 

        很明显这是空间换时间的策略,效果相当可观。但是在数据量大的情况下,可能会因为内存不足而无法工作。

 

目录
相关文章
|
2月前
|
算法 决策智能
基于prim算法求出网络最小生成树实现网络社团划分和规划
该程序使用MATLAB 2022a版实现路线规划,通过排序节点权值并运用Prim算法生成最小生成树完成网络规划。程序基于TSP问题,采用遗传算法与粒子群优化算法进行路径优化。遗传算法通过编码、选择、交叉及变异操作迭代寻优;粒子群优化算法则通过模拟鸟群觅食行为,更新粒子速度和位置以寻找最优解。
|
4月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
5月前
|
存储 传感器 算法
|
5月前
|
机器学习/深度学习 人工智能 算法
|
6月前
|
算法 Java
Java数据结构与算法:贪心算法之最小生成树
Java数据结构与算法:贪心算法之最小生成树
|
6月前
|
算法 C语言
数据结构与算法——最小生成树问题(什么是最小生成树、Prim算法、Kruskal算法)
数据结构与算法——最小生成树问题(什么是最小生成树、Prim算法、Kruskal算法)
35 0
|
7月前
|
人工智能 算法
一些算法的复习(最短路径、最小生成树、dp)
一些算法的复习(最短路径、最小生成树、dp)
|
7月前
|
算法
最小生成树算法
最小生成树算法
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
11天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。