算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法

简介: 这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。

一、名称

动态规划法应用

二、目的

1.贪婪技术的基本思想;
2.学会运用贪婪技术解决实际设计应用中碰到的问题。

三、要求

1.实现基于贪婪技术思想的Prim算法;
2.实现基于贪婪技术思想的Dijkstra算法。

四、内容

1.实现基于贪婪技术思想的Prim算法

1.1、Prim算法的伪代码描述

算法 Prim(G)
//构造最小生成树的Prim算法
//输入:加权连通图G<V,E>
//输出:E(T),组成G的最小生成树的边的集合
V(t)←{V0}  //可以用任意顶点来初始化树的顶点集合
Er←◎(集合空)
  For i←1 to |V|-1 do
在所有的边(v,u)中,求权重最小的边e*=(v*,u*),
使得v在Vt中而V-Vt中
V←VtU{u*}
Et←ErU{e*}
Return Er
AI 代码解读

2.2、Prim算法的源代码实现


package com.zyz.four;

import java.util.*;

public class Primel {
    static int MAX = Integer.MAX_VALUE;

    public static void main(String[] args) {
        int[][] map = new int[][]{
                {0, 10, MAX, MAX, MAX, 11, MAX, MAX, MAX},
                {10, 0, 18, MAX, MAX, MAX, 16, MAX, 12},
                {MAX, MAX, 0, 22, MAX, MAX, MAX, MAX, 8},
                {MAX, MAX, 22, 0, 20, MAX, MAX, 16, 21},
                {MAX, MAX, MAX, 20, 0, 26, MAX, 7, MAX},
                {11, MAX, MAX, MAX, 26, 0, 17, MAX, MAX},
                {MAX, 16, MAX, MAX, MAX, 17, 0, 19, MAX},
                {MAX, MAX, MAX, 16, 7, MAX, 19, 0, MAX},
                {MAX, 12, 8, 21, MAX, MAX, MAX, MAX, 0}};
        prim(map, map.length);
    }

    public static void prim(int[][] graph, int n) {

        char[] c = new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G', 'E', 'F'};
        int[] lowcost = new int[n];  //到新集合的最小权
        int[] mid = new int[n];//存取前驱结点
        List<Character> list = new ArrayList<Character>();//用来存储加入结点的顺序
        int i, j, min, minid, sum = 0;
        //初始化辅助数组
        for (i = 1; i < n; i++) {
            lowcost[i] = graph[0][i];
            mid[i] = 0;
        }
        list.add(c[0]);
        //一共需要加入n-1个点
        for (i = 1; i < n; i++) {
            min = MAX;
            minid = 0;
            //每次找到距离集合最近的点
            for (j = 1; j < n; j++) {
                if (lowcost[j] != 0 && lowcost[j] < min) {
                    min = lowcost[j];
                    minid = j;
                }
            }

            if (minid == 0) return;
            list.add(c[minid]);
            lowcost[minid] = 0;
            sum += min;
            System.out.println(c[mid[minid]] + "到" + c[minid] + " 权值:" + min);
            //加入该点后,更新其它点到集合的距离
            for (j = 1; j < n; j++) {
                if (lowcost[j] != 0 && lowcost[j] > graph[minid][j]) {
                    lowcost[j] = graph[minid][j];
                    mid[j] = minid;
                }
            }
        }
        System.out.println("sum:" + sum);

    }

}
AI 代码解读

2.3、Prim算法的时间效率分析

时间效率:Tn=O(n*n),在每一遍|V|-1次迭代中,就要遍历实现优先队列的数组,来查找并删除距离最小的顶点,如果有必要,在更新余下顶点的优先级。

2.实现基于贪婪技术思想的Dijkstra算法

2.1、Dijkstra算法的伪代码描述

算法 Dijkstra(G,s)
//单起点最短路径的Dijkstra算法
//输入:具非权重加权连通图G=<V,E>以及它的顶点s
//输出:对于V中的每个顶点v来说,从s到v的最短路径的长度d
//以及路径上的倒数第二个顶点Pv
Initialize(Q)//将顶点优先从队列初始化为空
For V中每一个顶点v
  dr←无穷大;Pv←null
insert(Q,v,dv)//初始化优先队列中顶点的优先级
ds←0;Decrease(Q,s,ds)//将s的优先级更新为ds
V(r) ←空集

For i←0 to |V|-1 do
  u* ←DeleteMin(Q) //删除优先级最小的元素
Vr←VrU{u*}
   For V-Vr中每一个和u*相邻的顶点u do
if du*+w(u*,u)<du
  du←du*+w(u*,u);pu du*+w(u*,u)u*
Decrease(Q,u,du)
AI 代码解读

2.2、Dijkstra算法的源代码实现

package com.zyz.four;

public class Dijkstra {
    /*
     * 参数adjMatrix:为图的权重矩阵,权值为-1的两个顶点表示不能直接相连
     * 函数功能:返回顶点0到其它所有顶点的最短距离,其中顶点0到顶点0的最短距离为0
     */
    public int[] getShortestPaths(int[][] adjMatrix) {
        int[] result = new int[adjMatrix.length];   //用于存放顶点0到其它顶点的最短距离
        boolean[] used = new boolean[adjMatrix.length];  //用于判断顶点是否被遍历
        used[0] = true;  //表示顶点0已被遍历
        for(int i = 1;i < adjMatrix.length;i++) {
            result[i] = adjMatrix[0][i];
            used[i] = false;
        }

        for(int i = 1;i < adjMatrix.length;i++) {
            int min = Integer.MAX_VALUE;    //用于暂时存放顶点0到i的最短距离,初始化为Integer型最大值
            int k = 0;
            for(int j = 1;j < adjMatrix.length;j++) {  //找到顶点0到其它顶点中距离最小的一个顶点
                if(!used[j] && result[j] != -1 && min > result[j]) {
                    min = result[j];
                    k = j;
                }
            }
            used[k] = true;    //将距离最小的顶点,记为已遍历
            for(int j = 1;j < adjMatrix.length;j++) {  //然后,将顶点0到其它顶点的距离与加入中间顶点k之后的距离进行比较,更新最短距离
                if(!used[j]) {  //当顶点j未被遍历时
                    //首先,顶点k到顶点j要能通行;这时,当顶点0到顶点j的距离大于顶点0到k再到j的距离或者顶点0无法直接到达顶点j时,更新顶点0到顶点j的最短距离
                    if(adjMatrix[k][j] != -1 && (result[j] > min + adjMatrix[k][j] || result[j] == -1))
                        result[j] = min + adjMatrix[k][j];
                }
            }
        }
        return result;
    }

    public static void main(String[] args) {
        Dijkstra test = new Dijkstra();
        int[][] adjMatrix = {
  
  {0,6,3,-1,-1,-1},
                {6,0,2,5,-1,-1},
                {3,2,0,3,4,-1},
                {-1,5,3,0,2,3},
                {-1,-1,4,2,0,5},
                {-1,-1,-1,3,5,0}};
        int[] result = test.getShortestPaths(adjMatrix);
        System.out.println("顶点0到图中所有顶点之间的最短距离为:");
        for(int i = 0;i < result.length;i++)
            System.out.print(result[i]+" ");
    }
}
AI 代码解读

2.3、Dijkstra算法的时间效率分析

Dijkstra复杂度是O(N^2),用权重矩阵表示,优先队列用无序数组来实现。

3、运行结果

3.1、Dijkstra算法的测试用例结果截图

在这里插入图片描述

3.2、Prim算法的测试用例结果截图

在这里插入图片描述

4、小结

在实验的过程中,我对贪婪技术的基本思想有了更加深入的了解。学会使用动态规划的目的,将问题从小的方面开始解决,逐步向解决整个问题靠近。通过本次实验、我了解到基于贪婪技术思想的Prim算法、Dijkstra算法基本原理。掌握了基本的使用方法、能够运用这种思路解决生活中的实际问题。

目录
打赏
0
0
0
0
221
分享
相关文章
基于 C# 深度优先搜索算法的局域网集中管理软件技术剖析
现代化办公环境中,局域网集中管理软件是保障企业网络高效运行、实现资源合理分配以及强化信息安全管控的核心工具。此类软件需应对复杂的网络拓扑结构、海量的设备信息及多样化的用户操作,而数据结构与算法正是支撑其强大功能的基石。本文将深入剖析深度优先搜索(Depth-First Search,DFS)算法,并结合 C# 语言特性,详细阐述其在局域网集中管理软件中的应用与实现。
49 3
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
73 15
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
MapReduce在实现PageRank算法中的应用
总结来说,在实现PageRank算法时使用MapReduce能够有效地进行大规模并行计算,并且具有良好的容错性和可扩展性。
137 76
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
64 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
13天前
|
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
48 7
|
24天前
|
基于 Python 迪杰斯特拉算法的局域网计算机监控技术探究
信息技术高速演进的当下,局域网计算机监控对于保障企业网络安全、优化资源配置以及提升整体运行效能具有关键意义。通过实时监测网络状态、追踪计算机活动,企业得以及时察觉潜在风险并采取相应举措。在这一复杂的监控体系背后,数据结构与算法发挥着不可或缺的作用。本文将聚焦于迪杰斯特拉(Dijkstra)算法,深入探究其在局域网计算机监控中的应用,并借助 Python 代码示例予以详细阐释。
44 6
解析局域网内控制电脑机制:基于 Go 语言链表算法的隐秘通信技术探究
数字化办公与物联网蓬勃发展的时代背景下,局域网内计算机控制已成为提升工作效率、达成设备协同管理的重要途径。无论是企业远程办公时的设备统一调度,还是智能家居系统中多设备间的联动控制,高效的数据传输与管理机制均构成实现局域网内计算机控制功能的核心要素。本文将深入探究 Go 语言中的链表数据结构,剖析其在局域网内计算机控制过程中,如何达成数据的有序存储与高效传输,并通过完整的 Go 语言代码示例展示其应用流程。
25 0
|
30天前
|
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
29 3
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
124 4