算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法

简介: 这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。

一、名称

动态规划法应用

二、目的

1.贪婪技术的基本思想;
2.学会运用贪婪技术解决实际设计应用中碰到的问题。

三、要求

1.实现基于贪婪技术思想的Prim算法;
2.实现基于贪婪技术思想的Dijkstra算法。

四、内容

1.实现基于贪婪技术思想的Prim算法

1.1、Prim算法的伪代码描述

算法 Prim(G)
//构造最小生成树的Prim算法
//输入:加权连通图G<V,E>
//输出:E(T),组成G的最小生成树的边的集合
V(t)←{V0}  //可以用任意顶点来初始化树的顶点集合
Er←◎(集合空)
  For i←1 to |V|-1 do
在所有的边(v,u)中,求权重最小的边e*=(v*,u*),
使得v在Vt中而V-Vt中
V←VtU{u*}
Et←ErU{e*}
Return Er
AI 代码解读

2.2、Prim算法的源代码实现


package com.zyz.four;

import java.util.*;

public class Primel {
    static int MAX = Integer.MAX_VALUE;

    public static void main(String[] args) {
        int[][] map = new int[][]{
                {0, 10, MAX, MAX, MAX, 11, MAX, MAX, MAX},
                {10, 0, 18, MAX, MAX, MAX, 16, MAX, 12},
                {MAX, MAX, 0, 22, MAX, MAX, MAX, MAX, 8},
                {MAX, MAX, 22, 0, 20, MAX, MAX, 16, 21},
                {MAX, MAX, MAX, 20, 0, 26, MAX, 7, MAX},
                {11, MAX, MAX, MAX, 26, 0, 17, MAX, MAX},
                {MAX, 16, MAX, MAX, MAX, 17, 0, 19, MAX},
                {MAX, MAX, MAX, 16, 7, MAX, 19, 0, MAX},
                {MAX, 12, 8, 21, MAX, MAX, MAX, MAX, 0}};
        prim(map, map.length);
    }

    public static void prim(int[][] graph, int n) {

        char[] c = new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G', 'E', 'F'};
        int[] lowcost = new int[n];  //到新集合的最小权
        int[] mid = new int[n];//存取前驱结点
        List<Character> list = new ArrayList<Character>();//用来存储加入结点的顺序
        int i, j, min, minid, sum = 0;
        //初始化辅助数组
        for (i = 1; i < n; i++) {
            lowcost[i] = graph[0][i];
            mid[i] = 0;
        }
        list.add(c[0]);
        //一共需要加入n-1个点
        for (i = 1; i < n; i++) {
            min = MAX;
            minid = 0;
            //每次找到距离集合最近的点
            for (j = 1; j < n; j++) {
                if (lowcost[j] != 0 && lowcost[j] < min) {
                    min = lowcost[j];
                    minid = j;
                }
            }

            if (minid == 0) return;
            list.add(c[minid]);
            lowcost[minid] = 0;
            sum += min;
            System.out.println(c[mid[minid]] + "到" + c[minid] + " 权值:" + min);
            //加入该点后,更新其它点到集合的距离
            for (j = 1; j < n; j++) {
                if (lowcost[j] != 0 && lowcost[j] > graph[minid][j]) {
                    lowcost[j] = graph[minid][j];
                    mid[j] = minid;
                }
            }
        }
        System.out.println("sum:" + sum);

    }

}
AI 代码解读

2.3、Prim算法的时间效率分析

时间效率:Tn=O(n*n),在每一遍|V|-1次迭代中,就要遍历实现优先队列的数组,来查找并删除距离最小的顶点,如果有必要,在更新余下顶点的优先级。

2.实现基于贪婪技术思想的Dijkstra算法

2.1、Dijkstra算法的伪代码描述

算法 Dijkstra(G,s)
//单起点最短路径的Dijkstra算法
//输入:具非权重加权连通图G=<V,E>以及它的顶点s
//输出:对于V中的每个顶点v来说,从s到v的最短路径的长度d
//以及路径上的倒数第二个顶点Pv
Initialize(Q)//将顶点优先从队列初始化为空
For V中每一个顶点v
  dr←无穷大;Pv←null
insert(Q,v,dv)//初始化优先队列中顶点的优先级
ds←0;Decrease(Q,s,ds)//将s的优先级更新为ds
V(r) ←空集

For i←0 to |V|-1 do
  u* ←DeleteMin(Q) //删除优先级最小的元素
Vr←VrU{u*}
   For V-Vr中每一个和u*相邻的顶点u do
if du*+w(u*,u)<du
  du←du*+w(u*,u);pu du*+w(u*,u)u*
Decrease(Q,u,du)
AI 代码解读

2.2、Dijkstra算法的源代码实现

package com.zyz.four;

public class Dijkstra {
    /*
     * 参数adjMatrix:为图的权重矩阵,权值为-1的两个顶点表示不能直接相连
     * 函数功能:返回顶点0到其它所有顶点的最短距离,其中顶点0到顶点0的最短距离为0
     */
    public int[] getShortestPaths(int[][] adjMatrix) {
        int[] result = new int[adjMatrix.length];   //用于存放顶点0到其它顶点的最短距离
        boolean[] used = new boolean[adjMatrix.length];  //用于判断顶点是否被遍历
        used[0] = true;  //表示顶点0已被遍历
        for(int i = 1;i < adjMatrix.length;i++) {
            result[i] = adjMatrix[0][i];
            used[i] = false;
        }

        for(int i = 1;i < adjMatrix.length;i++) {
            int min = Integer.MAX_VALUE;    //用于暂时存放顶点0到i的最短距离,初始化为Integer型最大值
            int k = 0;
            for(int j = 1;j < adjMatrix.length;j++) {  //找到顶点0到其它顶点中距离最小的一个顶点
                if(!used[j] && result[j] != -1 && min > result[j]) {
                    min = result[j];
                    k = j;
                }
            }
            used[k] = true;    //将距离最小的顶点,记为已遍历
            for(int j = 1;j < adjMatrix.length;j++) {  //然后,将顶点0到其它顶点的距离与加入中间顶点k之后的距离进行比较,更新最短距离
                if(!used[j]) {  //当顶点j未被遍历时
                    //首先,顶点k到顶点j要能通行;这时,当顶点0到顶点j的距离大于顶点0到k再到j的距离或者顶点0无法直接到达顶点j时,更新顶点0到顶点j的最短距离
                    if(adjMatrix[k][j] != -1 && (result[j] > min + adjMatrix[k][j] || result[j] == -1))
                        result[j] = min + adjMatrix[k][j];
                }
            }
        }
        return result;
    }

    public static void main(String[] args) {
        Dijkstra test = new Dijkstra();
        int[][] adjMatrix = {
  
  {0,6,3,-1,-1,-1},
                {6,0,2,5,-1,-1},
                {3,2,0,3,4,-1},
                {-1,5,3,0,2,3},
                {-1,-1,4,2,0,5},
                {-1,-1,-1,3,5,0}};
        int[] result = test.getShortestPaths(adjMatrix);
        System.out.println("顶点0到图中所有顶点之间的最短距离为:");
        for(int i = 0;i < result.length;i++)
            System.out.print(result[i]+" ");
    }
}
AI 代码解读

2.3、Dijkstra算法的时间效率分析

Dijkstra复杂度是O(N^2),用权重矩阵表示,优先队列用无序数组来实现。

3、运行结果

3.1、Dijkstra算法的测试用例结果截图

在这里插入图片描述

3.2、Prim算法的测试用例结果截图

在这里插入图片描述

4、小结

在实验的过程中,我对贪婪技术的基本思想有了更加深入的了解。学会使用动态规划的目的,将问题从小的方面开始解决,逐步向解决整个问题靠近。通过本次实验、我了解到基于贪婪技术思想的Prim算法、Dijkstra算法基本原理。掌握了基本的使用方法、能够运用这种思路解决生活中的实际问题。

目录
打赏
0
0
0
0
218
分享
相关文章
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
46 15
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
MapReduce在实现PageRank算法中的应用
总结来说,在实现PageRank算法时使用MapReduce能够有效地进行大规模并行计算,并且具有良好的容错性和可扩展性。
116 76
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
17 3
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
|
1月前
|
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
39 4
算法系列之动态规划
从第十批算法备案通过名单中分析算法的属地占比、行业及应用情况
2025年3月12日,国家网信办公布第十批深度合成算法通过名单,共395款。主要分布在广东、北京、上海、浙江等地,占比超80%,涵盖智能对话、图像生成、文本生成等多行业。典型应用包括医疗、教育、金融等领域,如觅健医疗内容生成算法、匠邦AI智能生成合成算法等。服务角色以面向用户为主,技术趋势为多模态融合与垂直领域专业化。
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
26天前
|
基于 C# 网络套接字算法的局域网实时监控技术探究
在数字化办公与网络安全需求增长的背景下,局域网实时监控成为企业管理和安全防护的关键。本文介绍C#网络套接字算法在局域网实时监控中的应用,涵盖套接字创建、绑定监听、连接建立和数据传输等操作,并通过代码示例展示其实现方式。服务端和客户端通过套接字进行屏幕截图等数据的实时传输,保障网络稳定与信息安全。同时,文章探讨了算法的优缺点及优化方向,如异步编程、数据压缩与缓存、错误处理与重传机制,以提升系统性能。
39 2
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统

热门文章

最新文章