什么是最小生成树
贪心算法
在最小生成树的问题中,运用贪心算法。
什么是“贪”:每一步都要最好的。
什么是“好”:权重最小的边。
需要约束:
Prim算法
思路
(适用于稠密图)
prim算法先选定一个顶点收录,然后以该顶点开始,往外找到权重最小的顶点,且该权重最小的顶点要与当前生成的最小树有关联,过程即:
代码(C语言)
/* 邻接矩阵存储 - Prim最小生成树算法 */ Vertex FindMinDist( MGraph Graph, WeightType dist[] ) { /* 返回未被收录顶点中dist最小者 */ Vertex MinV, V; WeightType MinDist = INFINITY; for (V=0; V<Graph->Nv; V++) { if ( dist[V]!=0 && dist[V]<MinDist) { /* 若V未被收录,且dist[V]更小 */ MinDist = dist[V]; /* 更新最小距离 */ MinV = V; /* 更新对应顶点 */ } } if (MinDist < INFINITY) /* 若找到最小dist */ return MinV; /* 返回对应的顶点下标 */ else return ERROR; /* 若这样的顶点不存在,返回-1作为标记 */ } int Prim( MGraph Graph, LGraph MST ) { /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */ WeightType dist[MaxVertexNum], TotalWeight; Vertex parent[MaxVertexNum], V, W; int VCount; Edge E; /* 初始化。默认初始点下标是0 */ for (V=0; V<Graph->Nv; V++) { /* 这里假设若V到W没有直接的边,则Graph->G[V][W]定义为INFINITY */ dist[V] = Graph->G[0][V]; parent[V] = 0; /* 暂且定义所有顶点的父结点都是初始点0 */ } TotalWeight = 0; /* 初始化权重和 */ VCount = 0; /* 初始化收录的顶点数 */ /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */ MST = CreateGraph(Graph->Nv); E = (Edge)malloc( sizeof(struct ENode) ); /* 建立空的边结点 */ /* 将初始点0收录进MST */ dist[0] = 0; VCount ++; parent[0] = -1; /* 当前树根是0 */ while (1) { V = FindMinDist( Graph, dist ); /* V = 未被收录顶点中dist最小者 */ if ( V==ERROR ) /* 若这样的V不存在 */ break; /* 算法结束 */ /* 将V及相应的边<parent[V], V>收录进MST */ E->V1 = parent[V]; E->V2 = V; E->Weight = dist[V]; InsertEdge( MST, E ); TotalWeight += dist[V]; dist[V] = 0; VCount++; for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */ if ( dist[W]!=0 && Graph->G[V][W]<INFINITY ) { /* 若W是V的邻接点并且未被收录 */ if ( Graph->G[V][W] < dist[W] ) { /* 若收录V使得dist[W]变小 */ dist[W] = Graph->G[V][W]; /* 更新dist[W] */ parent[W] = V; /* 更新树 */ } } } /* while结束*/ if ( VCount < Graph->Nv ) /* MST中收的顶点不到|V|个 */ TotalWeight = ERROR; return TotalWeight; /* 算法执行完毕,返回最小权重和或错误标记 */ }
Kruskal算法
思路
(适用于稀疏图)
其基本思想是把森林合并成一棵树。每次把权重最小的边收录进去,操作中注意不能构成回路,重复操作直到把所有边都收录进去。
代码
/* 邻接表存储 - Kruskal最小生成树算法 */ /*-------------------- 顶点并查集定义 --------------------*/ typedef Vertex ElementType; /* 默认元素可以用非负整数表示 */ typedef Vertex SetName; /* 默认用根结点的下标作为集合名称 */ typedef ElementType SetType[MaxVertexNum]; /* 假设集合元素下标从0开始 */ void InitializeVSet( SetType S, int N ) { /* 初始化并查集 */ ElementType X; for ( X=0; X<N; X++ ) S[X] = -1; } void Union( SetType S, SetName Root1, SetName Root2 ) { /* 这里默认Root1和Root2是不同集合的根结点 */ /* 保证小集合并入大集合 */ if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */ S[Root2] += S[Root1]; /* 集合1并入集合2 */ S[Root1] = Root2; } else { /* 如果集合1比较大 */ S[Root1] += S[Root2]; /* 集合2并入集合1 */ S[Root2] = Root1; } } SetName Find( SetType S, ElementType X ) { /* 默认集合元素全部初始化为-1 */ if ( S[X] < 0 ) /* 找到集合的根 */ return X; else return S[X] = Find( S, S[X] ); /* 路径压缩 */ } bool CheckCycle( SetType VSet, Vertex V1, Vertex V2 ) { /* 检查连接V1和V2的边是否在现有的最小生成树子集中构成回路 */ Vertex Root1, Root2; Root1 = Find( VSet, V1 ); /* 得到V1所属的连通集名称 */ Root2 = Find( VSet, V2 ); /* 得到V2所属的连通集名称 */ if( Root1==Root2 ) /* 若V1和V2已经连通,则该边不能要 */ return false; else { /* 否则该边可以被收集,同时将V1和V2并入同一连通集 */ Union( VSet, Root1, Root2 ); return true; } } /*-------------------- 并查集定义结束 --------------------*/ /*-------------------- 边的最小堆定义 --------------------*/ void PercDown( Edge ESet, int p, int N ) { /* 改编代码4.24的PercDown( MaxHeap H, int p ) */ /* 将N个元素的边数组中以ESet[p]为根的子堆调整为关于Weight的最小堆 */ int Parent, Child; struct ENode X; X = ESet[p]; /* 取出根结点存放的值 */ for( Parent=p; (Parent*2+1)<N; Parent=Child ) { Child = Parent * 2 + 1; if( (Child!=N-1) && (ESet[Child].Weight>ESet[Child+1].Weight) ) Child++; /* Child指向左右子结点的较小者 */ if( X.Weight <= ESet[Child].Weight ) break; /* 找到了合适位置 */ else /* 下滤X */ ESet[Parent] = ESet[Child]; } ESet[Parent] = X; } void InitializeESet( LGraph Graph, Edge ESet ) { /* 将图的边存入数组ESet,并且初始化为最小堆 */ Vertex V; PtrToAdjVNode W; int ECount; /* 将图的边存入数组ESet */ ECount = 0; for ( V=0; V<Graph->Nv; V++ ) for ( W=Graph->G[V].FirstEdge; W; W=W->Next ) if ( V < W->AdjV ) { /* 避免重复录入无向图的边,只收V1<V2的边 */ ESet[ECount].V1 = V; ESet[ECount].V2 = W->AdjV; ESet[ECount++].Weight = W->Weight; } /* 初始化为最小堆 */ for ( ECount=Graph->Ne/2; ECount>=0; ECount-- ) PercDown( ESet, ECount, Graph->Ne ); } int GetEdge( Edge ESet, int CurrentSize ) { /* 给定当前堆的大小CurrentSize,将当前最小边位置弹出并调整堆 */ /* 将最小边与当前堆的最后一个位置的边交换 */ Swap( &ESet[0], &ESet[CurrentSize-1]); /* 将剩下的边继续调整成最小堆 */ PercDown( ESet, 0, CurrentSize-1 ); return CurrentSize-1; /* 返回最小边所在位置 */ } /*-------------------- 最小堆定义结束 --------------------*/ int Kruskal( LGraph Graph, LGraph MST ) { /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */ WeightType TotalWeight; int ECount, NextEdge; SetType VSet; /* 顶点数组 */ Edge ESet; /* 边数组 */ InitializeVSet( VSet, Graph->Nv ); /* 初始化顶点并查集 */ ESet = (Edge)malloc( sizeof(struct ENode)*Graph->Ne ); InitializeESet( Graph, ESet ); /* 初始化边的最小堆 */ /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */ MST = CreateGraph(Graph->Nv); TotalWeight = 0; /* 初始化权重和 */ ECount = 0; /* 初始化收录的边数 */ NextEdge = Graph->Ne; /* 原始边集的规模 */ while ( ECount < Graph->Nv-1 ) { /* 当收集的边不足以构成树时 */ NextEdge = GetEdge( ESet, NextEdge ); /* 从边集中得到最小边的位置 */ if (NextEdge < 0) /* 边集已空 */ break; /* 如果该边的加入不构成回路,即两端结点不属于同一连通集 */ if ( CheckCycle( VSet, ESet[NextEdge].V1, ESet[NextEdge].V2 )==true ) { /* 将该边插入MST */ InsertEdge( MST, ESet+NextEdge ); TotalWeight += ESet[NextEdge].Weight; /* 累计权重 */ ECount++; /* 生成树中边数加1 */ } } if ( ECount < Graph->Nv-1 ) TotalWeight = -1; /* 设置错误标记,表示生成树不存在 */ return TotalWeight; }