Spark on Yarn年度知识整理

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 大数据体系结构:   Spark简介 Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter、join、groupByKey等。

大数据体系结构:

 

Spark简介

Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter、join、groupByKey等。是一个用来实现快速而同用的集群计算的平台。

Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。其底层采用Scala这种函数式语言书写而成,并且所提供的API深度借鉴Scala函数式的编程思想,提供与Scala类似的编程接口

 

Spark on Yarn

 

从用户提交作业到作业运行结束整个运行期间的过程分析。

 

一、客户端进行操作

1、根据yarnConf来初始化yarnClient,并启动yarnClient
  2、创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException;
  3、设置资源、环境变量:其中包括了设置Application的Staging目录、准备本地资源(jar文件、log4j.properties)、设置Application其中的环境变量、创建Container启动的Context等;
  4、设置Application提交的Context,包括设置应用的名字、队列、AM的申请的Container、标记该作业的类型为Spark;
  5、申请Memory,并最终通过yarnClient.submitApplication向ResourceManager提交该Application。
  当作业提交到YARN上之后,客户端就没事了,甚至在终端关掉那个进程也没事,因为整个作业运行在YARN集群上进行,运行的结果将会保存到HDFS或者日志中。

 

 

二、提交到YARN集群,YARN操作

1、运行ApplicationMaster的run方法;
  2、设置好相关的环境变量。
  3、创建amClient,并启动;
  4、在Spark UI启动之前设置Spark UI的AmIpFilter;
  5、在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application,也就是启动了Driver。在Driver中将会初始化SparkContext;
  6、等待SparkContext初始化完成,最多等待spark.yarn.applicationMaster.waitTries次数(默认为10),如果等待了的次数超过了配置的,程序将会退出;否则用SparkContext初始化yarnAllocator;

    7、当SparkContext、Driver初始化完成的时候,通过amClient向ResourceManager注册ApplicationMaster
  8、分配并启动Executeors。在启动Executeors之前,先要通过yarnAllocator获取到numExecutors个Container,然后在Container中启动Executeors。

那么这个Application将失败,将Application Status标明为FAILED,并将关闭SparkContext。其实,启动Executeors是通过ExecutorRunnable实现的,而ExecutorRunnable内部是启动CoarseGrainedExecutorBackend的。
  9、最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。

 

 Spark节点的概念

一、Spark驱动器是执行程序中的main()方法的进程。它执行用户编写的用来创建SparkContext(初始化)、创建RDD,以及运行RDD的转化操作和行动操作的代码。

驱动器节点driver的职责:

1、把用户程序转为任务task(driver)

Spark驱动器程序负责把用户程序转化为多个物理执行单元,这些单元也被称之为任务task(详解见备注)

2、为执行器节点调度任务(executor)

有了物理计划之后,Spark驱动器在各个执行器节点进程间协调任务的调度。Spark驱动器程序会根据当前的执行器节点,把所有任务基于数据所在位置分配给合适的执行器进程。当执行任务时,执行器进程会把缓存的数据存储起来,而驱动器进程同样会跟踪这些缓存数据的位置,并利用这些位置信息来调度以后的任务,以尽量减少数据的网络传输。 (就是所谓的移动计算,而不移动数据).

 

二、执行器节点

作用:

1、负责运行组成Spark应用的任务,并将结果返回给驱动器进程;

2、通过自身的块管理器(block Manager)为用户程序中要求缓存的RDD提供内存式存储。RDD是直接缓存在执行器进程内的,因此任务可以在运行时充分利用缓存数据加快运算。

 

驱动器的职责:

所有的Spark程序都遵循同样的结构:程序从输入数据创建一系列RDD,再使用转化操作派生成新的RDD,最后使用行动操作手机或存储结果RDD,Spark程序其实是隐式地创建出了一个由操作组成的逻辑上的有向无环图DAG。当驱动器程序执行时,它会把这个逻辑图转为物理执行计划。

这样 Spark就把逻辑计划转为一系列步骤(stage),而每个步骤又由多个任务组成。这些任务会被打爆送到集群中。

 

Spark初始化

1、每个Spark应用都由一个驱动器程序来发起集群上的各种并行操作。驱动器程序包含应用的main函数,并且定义了集群上的分布式数据集,以及对该分布式数据集应用了相关操作。

2、驱动器程序通过一个SparkContext对象来访问spark,这个对象代表对计算集群的一个连接。(比如在spark shell启动时已经自动创建了一个SparkContext对象,是一个叫做SC的变量。(下图,查看变量sc)

 

3、一旦创建了sparkContext,就可以用它来创建RDD。比如调用sc.textFile()来创建一个代表文本中各行文本的RDD。(比如val linesRDD = sc.textFile(“yangsy.text”),val spark = linesRDD.filter(line =>line.contains(“spark”),spark.count())

执行这些操作,驱动器程序一般要管理多个执行器,就是我们所说的executor节点。

4、在初始化SparkContext的同时,加载sparkConf对象来加载集群的配置,从而创建sparkContext对象。

    从源码中可以看到,在启动thriftserver时,调用了spark-   daemon.sh文件,该文件源码如左图,加载spark_home下的

    conf中的文件。

 

(在执行后台代码时,需要首先创建conf对象,加载相应参数, val sparkConf = new SparkConf().setMaster("local").setAppName("cocapp").set("spark.executor.memory", "1g"), val sc: SparkContext = new SparkContext(sparkConf))

 

 

RDD工作原理:

RDD(Resilient Distributed Datasets)[1]  ,弹性分布式数据集, 是分布式内存的一个抽象概念,RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,只能通过在其他RDD执行确定的转换操作(如map、join和group by)而创建,然而这些限制使得实现容错的开销很低。对开发者而言,RDD可以看作是Spark的一个对象,它本身运行于内存中,如读文件是一个RDD,对文件计算是一个RDD,结果集也是一个RDD ,不同的分片、 数据之间的依赖 、key-value类型的map数据都可以看做RDD。

主要分为三部分:创建RDD对象,DAG调度器创建执行计划,Task调度器分配任务并调度Worker开始运行。

SparkContext(RDD相关操作)→通过(提交作业)→(遍历RDD拆分stage→生成作业)DAGScheduler→通过(提交任务集)→任务调度管理(TaskScheduler)→通过(按照资源获取任务)→任务调度管理(TaskSetManager)

 

Transformation返回值还是一个RDD。它使用了链式调用的设计模式,对一个RDD进行计算后,变换成另外一个RDD,然后这个RDD又可以进行另外一次转换。这个过程是分布式的

 

Action返回值不是一个RDD。它要么是一个Scala的普通集合,要么是一个值,要么是空,最终或返回到Driver程序,或把RDD写入到文件系统中

转换(Transformations) (如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。

 

操作(Actions) (如:count, collect, save等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。

它们本质区别是:Transformation返回值还是一个RDD。它使用了链式调用的设计模式,对一个RDD进行计算后,变换成另外一个RDD,然后这个RDD又可以进行另外一次转换。这个过程是分布式的。Action返回值不是一个RDD。它要么是一个Scala的普通集合,要么是一个值,要么是空,最终或返回到Driver程序,或把RDD写入到文件系统中。关于这两个动作,在Spark开发指南中会有就进一步的详细介绍,它们是基于Spark开发的核心。这里将Spark的官方ppt中的一张图略作改造,阐明一下两种动作的区别。

 

从此图中可以看出shuffle操作是在DAG完成的 到taskset时都为窄依赖

 

RDD基础

1、Spark中的RDD就是一个不可变的分布式对象集合。每个RDD都被分为多个分区,这些分区运行在集群的不同节点上。创建RDD的方法有两种:一种是读取一个外部数据集;一种是在群东程序里分发驱动器程序中的对象集合,不如刚才的示例,读取文本文件作为一个字符串的RDD的示例。

2、创建出来后,RDD支持两种类型的操作:转化操作和行动操作

     转化操作会由一个RDD生成一个新的RDD。(比如刚才的根据谓词筛选)

     行动操作会对RDD计算出一个结果,并把结果返回到驱动器程序中,或把结果存储到外部存储系统(比如HDFS)     中。比如first()操作就是一个行动操作,会返回RDD的第一个元素。

     注:转化操作与行动操作的区别在于Spark计算RDD的方式不同。虽然你可以在任何时候定义一个新的RDD,但Spark只会惰性计算这些RDD。它们只有第一个在一个行动操作中用到时,才会真正的计算。之所以这样设计,是因为比如刚才调用sc.textFile(...)时就把文件中的所有行都读取并存储起来,就会消耗很多存储空间,而我们马上又要筛选掉其中的很多数据。

     这里还需要注意的一点是,spark会在你每次对它们进行行动操作时重新计算。如果想在多个行动操作中重用同一个RDD,那么可以使用RDD.persist()或RDD.collect()让Spark把这个RDD缓存下来。(可以是内存,也可以是磁盘)

3、Spark会使用谱系图来记录这些不同RDD之间的依赖关系,Spark需要用这些信息来按需计算每个RDD,也可以依靠谱系图在持久化的RDD丢失部分数据时用来恢复所丢失的数据。(如下图,过滤errorsRDD与warningsRDD,最终调用union()函数)

 

RDD计算方式

RDD的宽窄依赖

窄依赖 (narrow dependencies) 和宽依赖 (wide dependencies) 。窄依赖是指 父 RDD 的每个分区都只被子 RDD 的一个分区所使用 。相应的,那么宽依赖就是指父 RDD 的分区被多个子 RDD 的分区所依赖。例如, map 就是一种窄依赖,而 join 则会导致宽依赖

这种划分有两个用处。首先,窄依赖支持在一个结点上管道化执行。例如基于一对一的关系,可以在 filter 之后执行 map 。其次,窄依赖支持更高效的故障还原。因为对于窄依赖,只有丢失的父 RDD 的分区需要重新计算。而对于宽依赖,一个结点的故障可能导致来自所有父 RDD 的分区丢失,因此就需要完全重新执行。因此对于宽依赖,Spark 会在持有各个父分区的结点上,将中间数据持久化来简化故障还原,就像 MapReduce 会持久化 map 的输出一样。

 

Spark Example

 

  

步骤 1 :创建 RDD 。 上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 ) 。

步骤 2 :创建执行计划。 Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directed acyclic graph ,有向无环图 ) 作为逻辑执行计划。

步骤 3 :调度任务。 将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续。

假设本例中的 hdfs://names 下有四个文件块,那么 HadoopRDD 中 partitions 就会有四个分区对应这四个块数据,同时 preferedLocations 会指明这四个块的最佳位置。现在,就可以创建出四个任务,并调度到合适的集群结点上。

 

Spark数据分区

1、Spark的特性是对数据集在节点间的分区进行控制。在分布式系统中,通讯的代价是巨大的,控制数据分布以获得最少的网络传输可以极大地提升整体性能。Spark程序可以通过控制RDD分区方式来减少通讯的开销。 

2、Spark中所有的键值对RDD都可以进行分区。确保同一组的键出现在同一个节点上。比如,使用哈希分区将一个RDD分成了100个分区,此时键的哈希值对100取模的结果相同的记录会被放在一个节点上。

(可使用partitionBy(new HashPartitioner(100)).persist()来构造100个分区)

3、Spark中的许多操作都引入了将数据根据键跨界点进行混洗的过程。(比如:join(),leftOuterJoin(),groupByKey(),reducebyKey()等)对于像reduceByKey()这样只作用于单个RDD的操作,运行在未分区的RDD上的时候会导致每个键的所有对应值都在每台机器上进行本地计算。

 

SparkSQL 的shuffle过程

Spark SQL的核心是把已有的RDD,带上Schema信息,然后注册成类似sql里的”Table”,对其进行sql查询。这里面主要分两部分,一是生成SchemaRD,二是执行查询。

如果是spark-hive项目,那么读取metadata信息作为Schema、读取hdfs上数据的过程交给Hive完成,然后根据这俩部分生成SchemaRDD,在HiveContext下进行hql()查询。

 

Spark SQL结构化数据

 

1、首先说一下Apache Hive,Hive可以在HDFS内或者在其他存储系统上存储多种格式的表。SparkSQL可以读取Hive支持的任何表。要把Spark SQL连接已有的hive上,需要提供Hive的配置文件。hive-site.xml文件复制到spark的conf文件夹下。再创建出HiveContext对象(sparksql的入口),然后就可以使用HQL来对表进行查询,并以由行足证的RDD的形式拿到返回的数据。

2、创建Hivecontext并查询数据

      import org.apache.spark.sql.hive.HiveContext

      val hiveCtx = new org.apache.spark.sql.hive.HiveContext(sc)

      val rows = hiveCtx.sql(“SELECT name,age FROM users”)

      val fitstRow – rows.first()

      println(fitstRow.getSgtring(0)) //字段0是name字段

 

3、通过jdbc连接外部数据源 更新与加载

     Class.forName("com.mysql.jdbc.Driver")

     val conn = DriverManager.getConnection(mySQLUrl)

    val stat1 = conn.createStatement()

      stat1.execute("UPDATE CI_LABEL_INFO set DATA_STATUS_ID = 2 , DATA_DATE = '" + dataDate +"' where          LABEL_ID in ("+allCreatedLabels.mkString(",")+")" )

      stat1.close()

//加载外部数据源数据到内存

 val DIM_COC_INDEX_MODEL_TABLE_CONF  = sqlContext.jdbc(mySQLUrl,"DIM_COC_INDEX_MODEL_TABLE_CONF").cache()

 val targets = DIM_COC_INDEX_MODEL_TABLE_CONF.filter("TABLE_DATA_CYCLE ="+TABLE_DATA_CYCLE).collect

 

SparkSQL解析

首先说下传统数据库的解析,传统数据库的解析过程是按Rusult、Data Source、Operation的次序来解析的。传统数据库先将读入的SQL语句进行解析,分辨出SQL语句中哪些词是关键字(如select,from,where),哪些是表达式,哪些是Projection,哪些是Data Source等等。进一步判断SQL语句是否规范,不规范就报错,规范则按照下一步过程绑定(Bind)。过程绑定是将SQL语句和数据库的数据字典(列,表,视图等)进行绑定,如果相关的Projection、Data Source等都存在,就表示这个SQL语句是可以执行的。在执行过程中,有时候甚至不需要读取物理表就可以返回结果,比如重新运行刚运行过的SQL语句,直接从数据库的缓冲池中获取返回结果。 在数据库解析的过程中SQL语句时,将会把SQL语句转化成一个树形结构来进行处理,会形成一个或含有多个节点(TreeNode)的Tree,然后再后续的处理政对该Tree进行一系列的操作。 

  Spark SQL对SQL语句的处理和关系数据库对SQL语句的解析采用了类似的方法,首先会将SQL语句进行解析,然后形成一个Tree,后续如绑定、优化等处理过程都是对Tree的操作,而操作方法是采用Rule,通过模式匹配,对不同类型的节点采用不同的操作。SparkSQL有两个分支,sqlContext和hiveContext。sqlContext现在只支持SQL语法解析器(Catalyst),hiveContext支持SQL语法和HiveContext语法解析器。

 

SparkStreaming简介

SparkStreaming是一个批处理的流式计算框架,适合处理实时数据与历史数据混合处理的场景(比如,你用streaming将实时数据读入处理,再使用sparkSQL提取历史数据,与之关联处理)。Spark Streaming将数据流以时间片为单位分割形成RDD,使用RDD操作处理每一块数据,没块数据都会生成一个spark JOB进行处理,最终以批处理方式处理每个时间片的数据。(秒级)

 

目录
相关文章
|
4月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
280 3
|
1月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。
72 3
|
2月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
35 1
|
3月前
|
消息中间件 分布式计算 Java
Linux环境下 java程序提交spark任务到Yarn报错
Linux环境下 java程序提交spark任务到Yarn报错
51 5
|
6月前
|
资源调度 分布式计算 监控
Spark Standalone与YARN的区别?
【6月更文挑战第17天】Spark Standalone与YARN的区别?
369 57
|
5月前
|
SQL 弹性计算 资源调度
云服务器 ECS产品使用问题之bin/spark-sql --master yarn如何进行集群模式运行
云服务器ECS(Elastic Compute Service)是各大云服务商阿里云提供的一种基础云计算服务,它允许用户租用云端计算资源来部署和运行各种应用程序。以下是一个关于如何使用ECS产品的综合指南。
|
7月前
|
分布式计算 资源调度 Spark
Spark的一些问题汇总 及 Yarn与Spark架构的对比
Spark的一些问题汇总 及 Yarn与Spark架构的对比
89 0
|
3月前
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
165 3
YARN(Hadoop操作系统)的架构
|
3月前
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
76 1
使用YARN命令管理Hadoop作业
|
4月前
|
资源调度 分布式计算 算法
【揭秘Yarn调度秘籍】打破资源分配的枷锁,Hadoop Yarn权重调度全攻略!
【8月更文挑战第24天】在大数据处理领域,Hadoop Yarn 是一种关键的作业调度与集群资源管理工具。它支持多种调度器以适应不同需求,默认采用FIFO调度器,但可通过引入基于权重的调度算法来提高资源利用率。该算法根据作业或用户的权重值决定资源分配比例,权重高的可获得更多计算资源,特别适合多用户共享环境。管理员需在Yarn配置文件中启用特定调度器(如CapacityScheduler),并通过设置队列权重来实现资源的动态调整。合理配置权重有助于避免资源浪费,确保集群高效运行,满足不同用户需求。
67 3

热门文章

最新文章

相关实验场景

更多