记阿里人工智能与服务创新研讨会

简介:

题外话

之前没有了解过知识图谱,同样也是第一次参加研讨会。
总体而言,研讨会能够快速,高效地了解到学术界目前的研究方向。

Background

知识图谱,简而言之,就是以三元组代表(HeadEntity, Relationship, TailEntity)头实体,尾实体以及它们之间的关系。

知识图谱(Mapping Knowledge Domain)也被称为科学知识图谱,在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。

具体来说,知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它把复杂的知识领域通过数据挖掘、信息处理、知识计量和图形绘制而显示出来,揭示知识领域的动态发展规律,为学科研究提供切实的、有价值的参考。

Google知识图谱Wiki

其他代表知识库:

  1. WordNet
  2. Freebase

目前研究方向

分布式表示学习(distributed representation, embeddings)

主要研究思路: 将知识图谱嵌入到低维向量空间
  • 实体和关系都表示为低维向量
  • 有效表示和度量实体、关系间的语义关联

知识表示代表模型:

对每个事实(head, relation, tail),将relation看做从head到tail的翻译操作。

训练的优化目标为: h + r = t

此外还有Neural Tensor Network(NTN)以及Energy Model。
NTN
Energy Model

表示学习在处理一对多、多对一、多对多的关系时,不能较好的处理。当出现多个结果时,每个结果的权重相当。

在TransE的基础上考虑关系对实体的影响

有以下两个典型的算法:

  • TransH
  • TransR

TransH
TransR

Path Ranking

关系路径的表示学习: Recursive Neural Network(RNN)

考虑了关系路径的TransE算法为PTransE:

relation之间的组合语义,通常包括 ADD, MULTIPLY, RNN

通常关系之间的每个组合,需要单独训练一个目标函数。
在大规模复杂的知识图谱中,目标函数也会呈现指数级增长。

Probabilistic Graphical Models

这个算法,由于落地难的问题,大家都没有讲=.=

王志春-讲解了规则学习的几个方法:

  • 归纳逻辑程序设计 ILP
  • 类似数据挖掘中的关联规则
  • 关系路径
  • 分布式表示

韩先培-介绍了相关无监督语义关系抽取:

  • bootstrapping
  • distant supervision
  • Open IE(Stanford OpenIE)

写在最后

刘知远讲解的TransE非常的Solid,而且开源了算法实现https://github.com/thunlp/KG2E

王泉研究员,我只能献上我的膝盖了,语速很快,思路无敌清晰。简简单单的一个slide就能把当前知识图谱的研究方向洋洋洒洒的讲出来。

最后附上 刘知远的 ppt 大规模知识图谱的表示学习

相关文章
|
30天前
|
人工智能 自然语言处理 安全
用AI重构人机关系,OPPO智慧服务带来了更“懂你”的体验
OPPO在2025开发者大会上展现智慧服务新范式:通过大模型与意图识别技术,构建全场景入口矩阵,实现“服务找人”。打通负一屏、小布助手等系统级入口,让服务主动触达用户;为开发者提供统一意图标准、一站式平台与安全准则,降低适配成本,共建开放生态。
214 31
|
4月前
|
存储 关系型数据库 数据库
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
|
4月前
|
人工智能 负载均衡 安全
云上AI推理平台全掌握 (3):服务接入与全球调度
阿里云人工智能平台 PAI 平台推出的全球化的服务接入矩阵,为 LLM 服务量身打造了专业且灵活的服务接入方案,正重新定义 AI 服务的高可用接入标准——从单地域 VPC 安全隔离到跨洲际毫秒级调度,让客户的推理服务在任何网络环境下都能实现「接入即最优」。
|
1月前
|
人工智能 供应链 搜索推荐
拔俗AI 智能就业咨询服务平台:求职者的导航,企业的招聘滤网
AI智能就业平台破解求职招聘困局:精准匹配求职者、企业与高校,打破信息壁垒。简历诊断、岗位推荐、技能提升一站式服务,让就业更高效。
|
1月前
|
人工智能 Cloud Native 自然语言处理
拔俗AI智能体服务开发:你的7x24小时数字员工,让企业效率飙升的秘密武器
在“人效为王”时代,企业面临服务响应慢、成本高、协同难等痛点。阿里云AI智能体以自主决策、多模态交互、持续学习三大引擎,打造永不疲倦的“数字员工”,实现7×24小时高效服务,助力企业降本增效、驱动创新增长。(238字)
|
1月前
|
人工智能 供应链 算法
AI 产业服务平台:打造产业智能化的“加速器”与“连接器”
AI产业服务平台整合技术、数据、算力与人才,为中小企业提供低门槛、一站式AI赋能服务,覆盖研发、生产、营销、管理全链条,助力产业智能化转型。
|
2月前
|
人工智能 数据可视化 前端开发
AI Ping:精准可靠的大模型服务性能评测平台
AI Ping是清华系团队推出的“大模型服务评测平台”,被誉为“AI界的大众点评”。汇聚230+模型服务,7×24小时监测性能数据,以吞吐量、延迟等硬指标助力开发者科学选型。界面简洁,数据可视化强,支持多模型对比,横向对标国内外主流平台,为AI应用落地提供权威参考。
498 3