数据库查询优化——Mysql索引

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

目录(?)[+]

工作一年了,也是第一次使用MySQL的索引。添加了索引之后的速度的提升,让我惊叹不已。隔壁的老员工看到我的大惊小怪,平淡地回了一句“那肯定啊”。

对于任何DBMS,索引都是进行优化的最主要的因素。对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降。

小宝鸽试了一下,2.5万数据单表中,无索引:200ms-700ms,添加索引后10ms-15ms,使用redis缓存1ms-7ms,如果数据量更大的时候,索引效果将会更加明显。更甚者,多表查询。

索引原理

1、除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。

数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

2、另外,比如学生信息表,添加学生姓名索引,索引是在name上排序的。现在,当查找某个学生信息时,就不需要逐行搜索全表,可以利用索引进行有序查找(如二分查找法),并快速定位到匹配的值,以节省大量搜索时间。

3、是当数据量非常大,查询涉及多个表时,使用索引往往能使查询速度加快成千上万倍。 
例如,有3个未索引的表t1、t2、t3,分别只包含列c1、c2、c3,每个表分别含有1000行数据组成,指为1~1000的数值,查找对应值相等行的查询如下所示。

SELECT c1,c2,c3 FROM t1,t2,t3 WHERE c1=c2 AND c1=c3

此查询结果应该为1000行,每行包含3个相等的值。在无索引的情况下处理此查询,必须寻找3个表所有的组合,以便得出与WHERE子句相配的那些行。而可能的组合数目为1000×1000×1000(十亿),显然查询将会非常慢。

如果对每个表进行索引,就能极大地加速查询进程。利用索引的查询处理如下。

(1)从表t1中选择第一行,查看此行所包含的数据。

(2)使用表t2上的索引,直接定位t2中与t1的值匹配的行。类似,利用表t3上的索引,直接定位t3中与来自t1的值匹配的行。

(3)扫描表t1的下一行并重复前面的过程,直到遍历t1中所有的行。

在此情形下,仍然对表t1执行了一个完全扫描,但能够在表t2和t3上进行索引查找直接取出这些表中的行,比未用索引时要快一百万倍。

利用索引,MySQL加速了WHERE子句满足条件行的搜索,而在多表连接查询时,在执行连接时加快了与其他表中的行匹配的速度。

索引的类型

MySQL的索引包括普通索引、唯一性索引、全文索引、单列索引、多列索引和空间索引等。

1.普通索引

在创建普通索引时,不附加任何限制条件。这类索引可以创建在任何数据类型中,其值是否唯一和非空由字段本身的完整性约束条件决定。建立索引以后,查询时可以通过索引进行查询。例如,在student表的stu_id字段上建立一个普通索引。查询记录时,就可以根据该索引进行查询。

2.唯一性索引

使用UNIQUE参数可以设置索引为唯一性索引。在创建唯一性索引时,限制该索引的值必须是唯一的。例如,在student表的stu_name字段中创建唯一性索引,那么stu_name字段的值就必需是唯一的。通过唯一性索引,可以更快速地确定某条记录。主键就是一种特殊唯一性索引。

3.全文索引

使用FULLTEXT参数可以设置索引为全文索引。全文索引只能创建在CHAR、VARCHAR或TEXT类型的字段上。查询数据量较大的字符串类型的字段时,使用全文索引可以提高查询速度。例如,student表的information字段是TEXT类型,该字段包含了很多的文字信息。在information字段上建立全文索引后,可以提高查询information字段的速度。MySQL数据库从3.23.23版开始支持全文索引,但只有MyISAM存储引擎支持全文检索。在默认情况下,全文索引的搜索执行方式不区分大小写。但索引的列使用二进制排序后,可以执行区分大小写的全文索引。

4.单列索引

在表中的单个字段上创建索引。单列索引只根据该字段进行索引。单列索引可以是普通索引,也可以是唯一性索引,还可以是全文索引。只要保证该索引只对应一个字段 即可。

5.多列索引

多列索引是在表的多个字段上创建一个索引。该索引指向创建时对应的多个字段,可以通过这几个字段进行查询。但是,只有查询条件中使用了这些字段中第一个字段时,索引才会被使用。例如,在表中的id、name和sex字段上建立一个多列索引,那么,只有查询条件使用了id字段时该索引才会被使用。

6.空间索引

使用SPATIAL参数可以设置索引为空间索引。空间索引只能建立在空间数据类型上,这样可以提高系统获取空间数据的效率。MySQL中的空间数据类型包括GEOMETRY和POINT、LINESTRING和POLYGON等。目前只有MyISAM存储引擎支持空间检索,而且索引的字段不能为空值。对于初学者来说,这类索引很少会用到。

索引的操作

1.添加PRIMARY KEY(主键索引)

mysql>ALTER TABLE `table_name` ADD PRIMARY KEY ( `column` ) 

2.添加UNIQUE(唯一索引)

mysql>ALTER TABLE `table_name` ADD UNIQUE ( `column` ) 

3.添加INDEX(普通索引)

mysql>ALTER TABLE `table_name` ADD INDEX index_name ( `column` ) 

4.添加FULLTEXT(全文索引)

mysql>ALTER TABLE `table_name` ADD FULLTEXT ( `column`) 

5.添加多列索引

mysql>ALTER TABLE `table_name` ADD INDEX index_name ( `column1`, `column2`, `column3` )

创建索引

在执行CREATE TABLE语句时可以创建索引,也可以单独用CREATE INDEX或ALTER TABLE来为表增加索引。

1.ALTER TABLE

ALTER TABLE用来创建普通索引、UNIQUE索引或PRIMARY KEY索引。

ALTER TABLE table_name ADD INDEX index_name (column_list)
ALTER TABLE table_name ADD UNIQUE (column_list)
ALTER TABLE table_name ADD PRIMARY KEY (column_list)

其中table_name是要增加索引的表名,column_list指出对哪些列进行索引,多列时各列之间用逗号分隔。索引名index_name可选,缺省时,MySQL将根据第一个索引列赋一个名称。另外,ALTER TABLE允许在单个语句中更改多个表,因此可以在同时创建多个索引。

2.CREATE INDEX

CREATE INDEX可对表增加普通索引或UNIQUE索引。

CREATE INDEX index_name ON table_name (column_list)
CREATE UNIQUE INDEX index_name ON table_name (column_list)

table_name、index_name和column_list具有与ALTER TABLE语句中相同的含义,索引名不可选。另外,不能用CREATE INDEX语句创建PRIMARY KEY索引。

3.索引类型

在创建索引时,可以规定索引能否包含重复值。如果不包含,则索引应该创建为PRIMARY KEY或UNIQUE索引。对于单列惟一性索引,这保证单列不包含重复的值。对于多列惟一性索引,保证多个值的组合不重复。 
PRIMARY KEY索引和UNIQUE索引非常类似。事实上,PRIMARY KEY索引仅是一个具有名称PRIMARY的UNIQUE索引。这表示一个表只能包含一个PRIMARY KEY,因为一个表中不可能具有两个同名的索引。

下面的SQL语句对students表在sid上添加PRIMARY KEY索引。

ALTER TABLE students ADD PRIMARY KEY (sid)

删除索引

可利用ALTER TABLE或DROP INDEX语句来删除索引。类似于CREATE INDEX语句,DROP INDEX可以在ALTER TABLE内部作为一条语句处理,语法如下。

DROP INDEX index_name ON talbe_name
ALTER TABLE table_name DROP INDEX index_name
ALTER TABLE table_name DROP PRIMARY KEY

其中,前两条语句是等价的,删除掉table_name中的索引index_name。

第3条语句只在删除PRIMARY KEY索引时使用,因为一个表只可能有一个PRIMARY KEY索引,因此不需要指定索引名。如果没有创建PRIMARY KEY索引,但表具有一个或多个UNIQUE索引,则MySQL将删除第一个UNIQUE索引。

如果从表中删除了某列,则索引会受到影响。对于多列组合的索引,如果删除其中的某列,则该列也会从索引中删除。如果删除组成索引的所有列,则整个索引将被删除。

注:一般数据库默认都会为主键生成索引

参考文章: 
http://blog.csdn.net/yuanzhuohang/article/details/6497021 
http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html 
http://edu.cnzz.cn/201305/88671f51.shtml





相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1天前
|
搜索推荐 关系型数据库 MySQL
mysql like查询优化
通过合理的索引设计、使用全文索引、优化查询结构以及考虑分片和分区表,可以显著提高MySQL中 `LIKE`查询的性能。针对不同的应用场景选择合适的优化策略,能够有效地提升数据库查询效率,减少查询时间。希望这些方法和技巧能帮助您优化MySQL数据库中的模糊查询。
15 4
|
3天前
|
存储 缓存 关系型数据库
数据库查询优化的注意事项
【10月更文挑战第28天】
8 2
|
3天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
12 1
|
6天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
40 2
|
4天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
20 0
|
5天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
25 0
|
23天前
|
存储 SQL 关系型数据库
Mysql学习笔记(二):数据库命令行代码总结
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
96 6
|
21天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
55 3
Mysql(4)—数据库索引
|
23天前
|
SQL Ubuntu 关系型数据库
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
本文为MySQL学习笔记,介绍了数据库的基本概念,包括行、列、主键等,并解释了C/S和B/S架构以及SQL语言的分类。接着,指导如何在Windows和Ubuntu系统上安装MySQL,并提供了启动、停止和重启服务的命令。文章还涵盖了Navicat的使用,包括安装、登录和新建表格等步骤。最后,介绍了MySQL中的数据类型和字段约束,如主键、外键、非空和唯一等。
58 3
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
|
9天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
42 4