大数据||MapReduce编程模板

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 标准模板代码package com.lizh.hadoop.mapreduce;import java.io.IOException;import org.

标准模板代码

package com.lizh.hadoop.mapreduce;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import com.lizh.hadoop.mapreduce.WordCountMapReduce.WordCountMapper;
import com.lizh.hadoop.mapreduce.WordCountMapReduce.WordCountReduces;

public class MouldMapReduce extends Configured implements Tool{

    
    public class MouldMap extends Mapper<LongWritable, Text, Text, IntWritable>{

        @Override
        protected void setup(Context context) throws IOException,
                InterruptedException {
            // TODO 读取数据前的一些初始化工作或者读取文件前的一些初始化工作
            super.setup(context);
        }
        

        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            // TODO 
            super.map(key, value, context);
        }


        @Override
        protected void cleanup(Context context) throws IOException,
                InterruptedException {
            // TODO Auto-generated method stub
            super.cleanup(context);
        }
        
    }
    
    
    public class MouldReduce extends Reducer<Text, IntWritable, Text,IntWritable>{

        @Override
        protected void setup(Context context)
                throws IOException, InterruptedException {
            // TODO  读取数据前的一些初始化工作或者读取文件前的一些初始化工作
            super.setup(context);
        }
        

        @Override
        protected void reduce(Text arg0, Iterable<IntWritable> arg1,Context arg2)
                throws IOException, InterruptedException {
            // TODO Auto-generated method stub
            super.reduce(arg0, arg1, arg2);
        }
        
        @Override
        protected void cleanup(
                org.apache.hadoop.mapreduce.Reducer.Context context)
                throws IOException, InterruptedException {
            // TODO Auto-generated method stub
            super.cleanup(context);
        }
        
    }
    
    private Job getJob(String[] args){
        Configuration configuration = this.getConf();
        Job job = null;
        try {
            job = Job.getInstance(configuration, this.getClass().getSimpleName());
            job.setJarByClass(this.getClass());
            
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        
        return job;
    }
    
    public int run(String[] args) throws Exception {
        // TODO Auto-generated method stub
        //input-->map--reduce--output
    //getjob
        Job job = getJob(args);
        //setjob
        Path path = new Path(args[0]);
        FileInputFormat.addInputPath(job, path);
        
        // map
        job.setMapperClass(WordCountMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        
        // reduce
        job.setReducerClass(WordCountReduces.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        //output
        Path outputpath = new Path(args[1]);
        FileOutputFormat.setOutputPath(job, outputpath);
        
        // submit job
        boolean rv = job.waitForCompletion(true);//true的时候打印日志
        
        return rv ? 0:1;
    }
    
    public static void main(String[] args) throws Exception{
        Configuration conf = new Configuration();
        ToolRunner.run(conf, new MouldMapReduce(), args);
    }

}
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
存储 缓存 分布式计算
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
36 4
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
65 2
|
1月前
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
42 4
|
1月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
38 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
1月前
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
37 0
|
1月前
|
缓存 分布式计算 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
45 0
|
1月前
|
分布式计算 算法 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
50 0
|
3月前
|
分布式计算 大数据 Hadoop
MapReduce:大数据处理的基石
【8月更文挑战第31天】
119 0
|
3月前
|
机器学习/深度学习 分布式计算 算法
MaxCompute 的 MapReduce 与机器学习
【8月更文第31天】随着大数据时代的到来,如何有效地处理和分析海量数据成为了一个重要的课题。MapReduce 是一种编程模型,用于处理和生成大型数据集,其核心思想是将计算任务分解为可以并行处理的小任务。阿里云的 MaxCompute 是一个面向离线数据仓库的计算服务,提供了 MapReduce 接口来处理大规模数据集。本文将探讨如何利用 MaxCompute 的 MapReduce 功能来执行复杂的计算任务,特别是应用于机器学习场景。
80 0
|
3月前
|
存储 分布式计算 算法
"揭秘!MapReduce如何玩转压缩文件,让大数据处理秒变‘瘦身达人’,效率飙升,存储不再是烦恼!"
【8月更文挑战第17天】MapReduce作为Hadoop的核心组件,在处理大规模数据集时展现出卓越效能。通过压缩技术减少I/O操作和网络传输的数据量,不仅提升数据处理速度,还节省存储空间。支持Gzip等多种压缩算法,可根据需求选择。示例代码展示了如何配置Map输出压缩,并使用GzipCodec进行压缩。尽管压缩带来CPU负担,但在多数情况下收益大于成本,特别是Hadoop能够自动处理压缩文件,简化开发流程。
58 0