大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)

简介: 大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)

接上篇:https://developer.aliyun.com/article/1622537?spm=a2c6h.13148508.setting.20.27ab4f0eUI7v7p

分区器作用与分类

在PairRDD(key,value)中,很多操作都是基于Key的,系统会按照Key对数据进行重组,如 GroupByKey

数据重组需要规则,最常见的就是基于Hash的分区,此外还有一种复杂的基于抽样Range分区方法:

HashPartitioner

最简单、最常用,也是默认提供的分区器。

对于给定的Key,计算HashCode,并除以分区的个数取余,如果余数小于0,则用余数+分区的个数,最后返回的值就是这个Key所属的分区ID。

该分区方法可以保证Key相同的数据出现在同一个分区中。

用户可以通过 partitionBy主动使用分区器,通过 partitions参数指定想要分区的数量。

默认情况下的分区情况是:

val rdd1 = sc.makeRDD(1 to 100).map((_, 1))
rdd1.getNumPartitions

执行结果如下图所示:

执行结果如下图所示,分区已经让我们手动控制成10个了:


val rdd2 = rdd1.partitionBy(new org.apache.spark.HashPartitioner(10))
rdd2.getNumPartitions
rdd2.glom.collect.foreach(x => println(x.toBuffer))

RangePartitioner

简单来说就是将一定范围内的数映射到某个分区内,在实现中,分界的算法尤为重要,用到了水塘抽样算法。sortByKey会使用RangePartitioner。

进行代码的测试:

val rdd3 = rdd1.partitionBy(new org.apache.spark.RangePartitioner(10, rdd1))
rdd3.glom.collect.foreach(x => println(x.toBuffer))

执行结果如下图所示:

但是现在的问题是:在执行分区之前其实并不知道数据的分布情况,如果想知道数据的分区就需要对数据进行采样。


Spark中的RangePartitioner在对数据采样的过程中使用了 “水塘采样法”

水塘采样法是:在包含N个项目的集合S中选取K个样本,其中N为1或者很大的未知的数量,尤其适用于不能把所有N个项目都存放到主内存的情况。

在采样过程中执行了 collect() 操作,引发了 Action 操作。

自定义分区器

Spark允许用户通过自定义的Partitioner对象,灵活的来控制RDD的分区方式。

我们需要实现自定义分区器,按照以下的规则进行分区:


分区 0 < 100

100 <= 分区1 < 200

200 <= 分区2 < 300

300 <= 分区3 < 400

900 <= 分区9 < 1000

编写代码

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{Partitioner, SparkConf, SparkContext}

import scala.collection.immutable


class MyPartitioner(n: Int) extends Partitioner {

  override def numPartitions: Int = n

  override def getPartition(key: Any): Int = {
    val k = key.toString.toInt
    k / 100
  }
}

object UserDefinedPartitioner {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("UserDefinedPartitioner")
      .setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val random = scala.util.Random
    val arr: immutable.IndexedSeq[Int] = (1 to  100)
      .map(idx => random.nextInt(1000))

    val rdd1: RDD[(Int, Int)] = sc.makeRDD(arr).map((_, 1))
    rdd1.glom.collect.foreach(x => println(x.toBuffer))

    println("=========================================")

    val rdd2 = rdd1.partitionBy(new MyPartitioner(10))
    rdd2.glom.collect().foreach(x => println(x.toBuffer))
    
    sc.stop()
    
  }

}

打包上传

这里之前已经重复过多次,就跳过了

mvn clean package

运行测试

spark-submit --master local[*] --class icu.wzk.UserDefinedPartitioner spark-wordcount

可以看到如下的运行结果:

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
377 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
972 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
9月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
498 79
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
580 2
|
前端开发 Java Scala
Scala并发编程基础
1. Scala Actor概念 什么是Scala Actor 概念 Scala中的Actor能够实现并行编程的强大功能,它是基于事件模型的并发机制,Scala是运用消息的发送、接收来实现高并发的。
2143 0
|
前端开发 安全 Java
Scala入门到精通——第二十六节 Scala并发编程基础
作者:摇摆少年梦 视频地址:http://www.xuetuwuyou.com/course/12 本节主要内容 Scala并发编程简介 Scala Actor并发编程模型 react模型 Actor的几种状态 Actor深入使用解析 1. Scala并发编程简介 2003 年,Herb Sutter 在他的文章 “The Free Lunch Is Over
3223 0
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
208 5
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
161 3
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
259 0
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
310 0