MapReduce 优化经验

简介: MapReduce 优化经验

1. 合理设置 Map 和 Reduce 任务的数量:过多的 Map 和 Reduce 任务会增加任务调度和数据传输时间,导致性能下降。一般来说,Map 任务的数量应该与切片数量成比例,Reduce 任务的数量应该与集群节点数成比例。

2. 增大环形缓冲区大小:MapReduce 任务可以通过缓存来减少磁盘 I/O 和网络传输的开销,提高程序的性能。可以通过增大环形缓冲区的大小和溢出的阈值比来提高缓存的效率。

3. 避免数据倾斜:在处理过程中,一些 key 可能会被分配到同一个 Reduce 任务中,导致任务执行时间不均衡。为了解决这个问题,可以使用自定义分区器、合并小文件、拆分大文件等方式来避免数据倾斜。

4. 使用 Combiner:Combiner 可以在 Map 任务完成后对数据进行局部聚合,从而减少 Reduce 任务的输入数据量,提高程序的性能,前提是在不影响业务的情况下,使用 combiner

5. 合并小文件:小文件问题可以使用 CombineTextInputFormat 进行输入,将小文件进行合并处理。

6. 使用压缩:使用压缩可以减少网络传输的数据量和磁盘空间的占用,提高程序的性能。

7. 设置 map 和 reduce 共存:可以通过调整参数,当 map 运行到一定程序后,reduce 也开始运行,以此减少 reduce 的等待时间。

相关文章
|
2月前
|
机器学习/深度学习 分布式计算 监控
面经:MapReduce编程模型与优化策略详解
【4月更文挑战第10天】本文是关于MapReduce在大数据处理中的关键作用的博客摘要。作者分享了面试经验,强调了MapReduce的基本原理、Hadoop API、优化策略和应用场景。MapReduce包含Map和Reduce两个主要阶段,Map阶段处理输入数据生成中间键值对,Reduce阶段进行聚合计算。面试重点包括理解MapReduce工作流程、使用Hadoop API编写Map/Reduce函数、选择优化策略(如分区、Combiner和序列化)以及应用场景,如日志分析和机器学习。
48 2
|
2月前
|
分布式计算
MapReduce【数据倾斜的优化】
MapReduce【数据倾斜的优化】
|
2月前
|
存储 分布式计算 自然语言处理
MapReduce【小文件的优化-Sequence文件】
MapReduce【小文件的优化-Sequence文件】
|
8月前
|
分布式计算 Java Hadoop
39 MAPREDUCE参数优化
39 MAPREDUCE参数优化
34 0
|
存储 分布式计算 资源调度
MapReduce框架--InputFormat数据输入--切片优化(11)
MapReduce框架--InputFormat数据输入--切片优化(11)
254 0
MapReduce框架--InputFormat数据输入--切片优化(11)
|
分布式计算 资源调度 大数据
【大数据优化】(二)MapReduce 优化方法
【大数据优化】(二)MapReduce 优化方法
308 0
【大数据优化】(二)MapReduce 优化方法
|
分布式计算 资源调度 Hadoop
MapReduce 优化方法|学习笔记
快速学习 MapReduce 优化方法
192 0
|
分布式计算 开发工具 负载均衡
Google MapReduce有啥巧妙优化?
搞架构的人,Google的架构论文是必看的,但好像大家都不愿意去啃英文论文。故把自己的读书笔记,加入自己的思考,分享给大家。
1600 0
|
分布式计算 Java
MapReduce中map并行度优化及源码分析
mapTask并行度的决定机制   一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理。
1247 0
|
1月前
|
分布式计算 Hadoop Java
Hadoop MapReduce编程
该教程指导编写Hadoop MapReduce程序处理天气数据。任务包括计算每个城市ID的最高、最低气温、气温出现次数和平均气温。在读取数据时需忽略表头,且数据应为整数。教程中提供了环境变量设置、Java编译、jar包创建及MapReduce执行的步骤说明,但假设读者已具备基础操作技能。此外,还提到一个扩展练习,通过分区功能将具有相同尾数的数字分组到不同文件。
29 1