大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节完成的内容如下:


Spark RDD的依赖关系

重回 WordCount

RDD 持久化

RDD 缓存

RDD容错机制

基本概念

涉及到的算子:checkpoint,也是Transformation


Spark中对于数据的保存除了持久化操作外,还提供了检查点的机制

检查点本质是通过RDD写入高可靠的磁盘,主要目的是为了容错。检查点通过将数据写入到HDFS文件系统实现了RDD的检查点功能。

Lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销

cache和checkpoint是有显著区别的,缓存把RDD计算出来然后放到内存中,但RDD的依赖链不能丢掉,当某个点某个Executor宕机了,上面cache的RDD就会丢掉,需要通过依赖链重新计算。不同的是,checkpoint是把RDD保存在HDFS中,是多副本的可靠存储,此时依赖链可以丢弃,所以斩断了依赖链。

适合场景

DAG中的Lineage过长,如果重新计算,开销会很大

在宽依赖上做checkpoint获得的收益更大

启动Shell

# 启动 spark-shell
spark-shell --master local[*]

checkpoint

// 设置检查点目录
sc.setCheckpointDir("/tmp/checkpoint")

val rdd1 = sc.parallelize(1 to 1000)
val rdd2 = rdd1.map(_*2)
rdd2.checkpoint
// checkpoint是lazy操作
rdd2.isCheckpointed

可以发现,返回结果是False

RDD 依赖关系1

checkpoint之前的rdd依赖关系

  • rdd2.dependencies(0).rdd
  • rdd2.dependencies(0).rdd.collect
  • 我们可以观察到,依赖关系是有的,关系到之前的 rdd1 的数据了:

触发checkpoint

我们可以通过执行 Action 的方式,来触发 checkpoint

执行一次action,触发checkpoint的执行

  • rdd2.count
  • rdd2.isCheckpointed
  • 此时观察,可以发现 checkpoint 已经是 True 了:

RDD依赖关系2

我们再次观察RDD的依赖关系:

再次查看RDD的依赖关系。可以看到checkpoint后,RDD的lineage被截断,变成从checkpointRDD开始


rdd2.dependencies(0).rdd

rdd2.dependencies(0).rdd.collect

此时观察到,已经不是最开始的 rdd1 了:

查看checkpoint

我们可以查看对应的保存的文件,查看RDD所依赖的checkpoint文件

  • rdd2.getCheckpointFile
    运行的结果如下图:

RDD的分区

基本概念

spark.default.paralleism: 默认的并发数 2

本地模式

# 此时 spark.default.paralleism 为 N
spark-shell --master local[N]
# 此时 spark.default.paralleism 为 1
spark-shell --master local

伪分布式

  • x为本机上启动的Executor数
  • y为每个Executor使用的core数
  • z为每个Executor使用的内存
  • spark.default.paralleism 为 x * y
spark-shell --master local-cluster[x,y,z]

分布式模式

spark.default.paralleism = max(应用程序持有Executor的core总数, 2)
• 1

创建RDD方式

集合创建

简单的说,RDD分区数等于cores总数

val rdd1 = sc.paralleize(1 to 100)
rdd.getNumPartitions

textFile创建

如果没有指定分区数:


本地文件: rdd的分区数 = max(本地文件分片数,sc.defaultMinPartitions)

HDFS文件:rdd的分区数 = max(HDFS文件block数,sc.defaultMinPartitions)

需要额外注意的是:


本地文件分片数 = 本地文件大小 / 32M

  • 读取 HDFS 文件,同时指定了分区数 < HDFS文件的Block数,指定的数将不会生效
val rdd = sc.textFile("data/1.txt")
rdd.getNumPartitions

RDD分区器

判断分区器

以下RDD分别是否有分区器,是什么类型的分区器

val rdd1 = sc.textFile("/wcinput/wc.txt")
rdd1.partitioner

val rdd2 = sc.flatMap(_.split("\\s+"))
rdd2.partitioner

val rdd3 = rdd2.map((_, 1))
rdd3.partitioner

val rdd4 = rdd3.reduceByKey(_ + _)
rdd4.partitioner

val rdd5 = rdd4.sortByKey()
rdd5.partitioner

接下篇:https://developer.aliyun.com/article/1622536

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
213 0
|
9月前
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
392 15
|
9月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
221 0
【赵渝强老师】Spark RDD的缓存机制
|
2月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
160 14
|
4月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
138 4
|
3月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
128 0
|
4月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
272 3
|
4月前
|
SQL 人工智能 分布式计算
ODPS:数据浪潮中的成长与突围
本文讲述了作者在大数据浪潮中,通过引入阿里云ODPS体系(包括MaxCompute、DataWorks、Hologres)解决数据处理瓶颈、实现业务突破与个人成长的故事。从被海量数据困扰到构建“离线+实时”数据架构,ODPS不仅提升了数据处理效率,更推动了技术能力与业务影响力的双重跃迁。
|
2月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
130 14
|
29天前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。