大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节完成的内容如下:


Spark RDD的依赖关系

重回 WordCount

RDD 持久化

RDD 缓存

RDD容错机制

基本概念

涉及到的算子:checkpoint,也是Transformation


Spark中对于数据的保存除了持久化操作外,还提供了检查点的机制

检查点本质是通过RDD写入高可靠的磁盘,主要目的是为了容错。检查点通过将数据写入到HDFS文件系统实现了RDD的检查点功能。

Lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销

cache和checkpoint是有显著区别的,缓存把RDD计算出来然后放到内存中,但RDD的依赖链不能丢掉,当某个点某个Executor宕机了,上面cache的RDD就会丢掉,需要通过依赖链重新计算。不同的是,checkpoint是把RDD保存在HDFS中,是多副本的可靠存储,此时依赖链可以丢弃,所以斩断了依赖链。

适合场景

DAG中的Lineage过长,如果重新计算,开销会很大

在宽依赖上做checkpoint获得的收益更大

启动Shell

# 启动 spark-shell
spark-shell --master local[*]

checkpoint

// 设置检查点目录
sc.setCheckpointDir("/tmp/checkpoint")

val rdd1 = sc.parallelize(1 to 1000)
val rdd2 = rdd1.map(_*2)
rdd2.checkpoint
// checkpoint是lazy操作
rdd2.isCheckpointed

可以发现,返回结果是False

RDD 依赖关系1

checkpoint之前的rdd依赖关系

  • rdd2.dependencies(0).rdd
  • rdd2.dependencies(0).rdd.collect
  • 我们可以观察到,依赖关系是有的,关系到之前的 rdd1 的数据了:

触发checkpoint

我们可以通过执行 Action 的方式,来触发 checkpoint

执行一次action,触发checkpoint的执行

  • rdd2.count
  • rdd2.isCheckpointed
  • 此时观察,可以发现 checkpoint 已经是 True 了:

RDD依赖关系2

我们再次观察RDD的依赖关系:

再次查看RDD的依赖关系。可以看到checkpoint后,RDD的lineage被截断,变成从checkpointRDD开始


rdd2.dependencies(0).rdd

rdd2.dependencies(0).rdd.collect

此时观察到,已经不是最开始的 rdd1 了:

查看checkpoint

我们可以查看对应的保存的文件,查看RDD所依赖的checkpoint文件

  • rdd2.getCheckpointFile
    运行的结果如下图:

RDD的分区

基本概念

spark.default.paralleism: 默认的并发数 2

本地模式

# 此时 spark.default.paralleism 为 N
spark-shell --master local[N]
# 此时 spark.default.paralleism 为 1
spark-shell --master local

伪分布式

  • x为本机上启动的Executor数
  • y为每个Executor使用的core数
  • z为每个Executor使用的内存
  • spark.default.paralleism 为 x * y
spark-shell --master local-cluster[x,y,z]

分布式模式

spark.default.paralleism = max(应用程序持有Executor的core总数, 2)
• 1

创建RDD方式

集合创建

简单的说,RDD分区数等于cores总数

val rdd1 = sc.paralleize(1 to 100)
rdd.getNumPartitions

textFile创建

如果没有指定分区数:


本地文件: rdd的分区数 = max(本地文件分片数,sc.defaultMinPartitions)

HDFS文件:rdd的分区数 = max(HDFS文件block数,sc.defaultMinPartitions)

需要额外注意的是:


本地文件分片数 = 本地文件大小 / 32M

  • 读取 HDFS 文件,同时指定了分区数 < HDFS文件的Block数,指定的数将不会生效
val rdd = sc.textFile("data/1.txt")
rdd.getNumPartitions

RDD分区器

判断分区器

以下RDD分别是否有分区器,是什么类型的分区器

val rdd1 = sc.textFile("/wcinput/wc.txt")
rdd1.partitioner

val rdd2 = sc.flatMap(_.split("\\s+"))
rdd2.partitioner

val rdd3 = rdd2.map((_, 1))
rdd3.partitioner

val rdd4 = rdd3.reduceByKey(_ + _)
rdd4.partitioner

val rdd5 = rdd4.sortByKey()
rdd5.partitioner

接下篇:https://developer.aliyun.com/article/1622536

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
107 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
68 0
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
44 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
98 0
|
1月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
61 6
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
96 2
|
2月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
32 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
70 1
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
62 1
|
2月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
51 1