大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍

简介: 大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节我们完成了如下的内容:


Hadoop 集群启动

Spark 集群启动

h121 h122 h123 节点启动

集群启动测试 SparkShell

什么是RDD

RDD是Spark的基石,是实现Spark数据处理的核心现象。

RDD是一个抽象类,它代表一个不可变、可分区、里面的元素可并行计算的集合。


RDD(Resilient Distributed Dataset)是Spark中的核心概念,它是一个容错、可以并行执行的分布式数据集。

它有如下的5个特征:


一个分区的列表

一个计算函数compute,对每个分区进行计算

对其他RDDs的依赖(宽依赖、窄依赖)列表

对Key-Value RDDs来说,存在一个分区器(Partitioner)【可选】

对每个分区由一个优先位置的列表【可选】

RDD 特点介绍

不可变性(Immutability)

RDD一旦创建,就不能被修改。每次对RDD进行操作(例如过滤、映射等)都会产生一个新的RDD。这种不可变性简化了并行处理,因为无需担心多个计算节点间的数据竞争。


分布式(Distributed)

RDD的数据分布在多个节点上,这使得Spark能够处理大规模的数据集。RDD的每个分区都可以在不同的节点上独立处理。


容错性(Fault Tolerance)

RDD通过“血统”(Lineage)记录其生成方式。如果RDD的某些分区在计算过程中丢失,可以根据这些血统信息重新计算丢失的数据。通过这种方式,RDD能够在节点故障时自动恢复。


惰性求值(Lazy Evaluation)

RDD的操作被分为两类:转换操作(Transformations) 和 行动操作(Actions)。转换操作是惰性求值的,即不会立即执行,而是等到遇到行动操作时才触发计算。这样做的好处是可以通过合并多个转换操作来优化计算过程,减少不必要的中间计算。


类型安全(Type Safety)

在Scala语言中,RDD是类型安全的,意味着你可以在编译时捕获类型错误,这对开发者来说非常有帮助。


并行操作(Parallel Operation)

RDD的每个分区可以独立进行处理,允许多线程或多节点并行执行,充分利用集群的计算资源。


缓存与持久化(Caching and Persistence)

可以将RDD缓存或持久化到内存或磁盘中,以便在多次使用时避免重复计算,从而提高性能。


丰富的API

RDD提供了丰富的API支持各种操作,包括map、filter、reduceByKey、groupBy、join等,能够满足大部分分布式数据处理的需求。


RDD的特点

分区

RDD逻辑上是分区的,每个分区的数据是抽象存在的,计算的时候通过一个compute函数得到每个分区的数据。如果RDD是通过己有的文件系统构建,则compute函数是读取指定文件系统中的数据,如果RDD是通过其他RDD转换而来,则compute函数是执行转换逻辑将其他RDD的数据进行转换。

只读

RDD是只读的,要想改变RDD中的数据,只能在现有的RDD基础上创建新的RDD。

一个RDD转换为另一个RDD,通过丰富的算子(map filter union join reduceByKey等等)实现,不再像MR那样写Map和Reduce了。

RDD的操作算子包括两类:


Transformation:用来对RDD进行转化,延迟执行(Lazy)

Action:用来出发RDD的计算,得到相关计算结果或者将RDD保存的文件系统中

依赖

RDDs通过操作算子进行转换,转换得到的新RDD包含了从其他RDDs衍生出所必须得信息,RDDs之间维护着这种学院关系(lineage),也称为依赖。


窄依赖:RDDs之间的分区是一一对应的(1对1 或者 n对1)

宽依赖:子RDD每个分区与父RDD的每个分区都有关,是多对多的关系

缓存

可以控制存储级别(内存、磁盘等)来进行缓存

如果在应用程序中多次使用同一个RDD,可以将RDD缓存起来,该RDD只有在第一次计算的时候会根据血缘关系得到分区的数据,在后续其他地方用到该RDD的时候,会直接从缓存取而不用再根据血缘计算,加速后期的重用。 CheckPoint

虽然RDD的血缘关系天然的可以实现容错,当RDD的某个分区失败或者丢失,可以通过血缘关系来进行重建。

但是对于长时间迭代型的应用来说,随着迭代的进行,RDDs之间的血缘关系会越来越长,一旦在后续迭代的过程中出错,则需要 通过非常长的血缘关系去重建,影响性能。

RDD支持CheckPoint将数据保存到持久化的存储中,这样就可以切断之前的血缘关系,因为CheckPoint后的RDD不需要知道它的父RDDs了,可以直接从CheckPoint拿到数据。


Spark编程模型

RDD表示数据对象

通过对象上的方法调用来对RDD进行转换

最终显示结果或者将结果输出到外部数据源

RDD转换算子称为Transformation是Lazy的(延迟执行)

只有遇到 Action算子,才会执行RDD的转换操作

如果要使用Spark,就需要编写Driver程序,它被提交到集群运行。


Driver中定义了一个或多个RDD,并调用RDD上的各种算子

Worker则执行RDD分区计算任务

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
382 0
|
9月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
501 79
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
230 0
|
10月前
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
506 15
|
10月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
319 0
【赵渝强老师】Spark RDD的缓存机制
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
185 4
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
191 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
185 0
|
缓存 分布式计算 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
251 0
|
分布式计算 算法 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
236 0