大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节我们完成了如下的内容:


Hadoop 集群启动

Spark 集群启动

h121 h122 h123 节点启动

集群启动测试 SparkShell

什么是RDD

RDD是Spark的基石,是实现Spark数据处理的核心现象。

RDD是一个抽象类,它代表一个不可变、可分区、里面的元素可并行计算的集合。


RDD(Resilient Distributed Dataset)是Spark中的核心概念,它是一个容错、可以并行执行的分布式数据集。

它有如下的5个特征:


一个分区的列表

一个计算函数compute,对每个分区进行计算

对其他RDDs的依赖(宽依赖、窄依赖)列表

对Key-Value RDDs来说,存在一个分区器(Partitioner)【可选】

对每个分区由一个优先位置的列表【可选】

RDD 特点介绍

不可变性(Immutability)

RDD一旦创建,就不能被修改。每次对RDD进行操作(例如过滤、映射等)都会产生一个新的RDD。这种不可变性简化了并行处理,因为无需担心多个计算节点间的数据竞争。


分布式(Distributed)

RDD的数据分布在多个节点上,这使得Spark能够处理大规模的数据集。RDD的每个分区都可以在不同的节点上独立处理。


容错性(Fault Tolerance)

RDD通过“血统”(Lineage)记录其生成方式。如果RDD的某些分区在计算过程中丢失,可以根据这些血统信息重新计算丢失的数据。通过这种方式,RDD能够在节点故障时自动恢复。


惰性求值(Lazy Evaluation)

RDD的操作被分为两类:转换操作(Transformations) 和 行动操作(Actions)。转换操作是惰性求值的,即不会立即执行,而是等到遇到行动操作时才触发计算。这样做的好处是可以通过合并多个转换操作来优化计算过程,减少不必要的中间计算。


类型安全(Type Safety)

在Scala语言中,RDD是类型安全的,意味着你可以在编译时捕获类型错误,这对开发者来说非常有帮助。


并行操作(Parallel Operation)

RDD的每个分区可以独立进行处理,允许多线程或多节点并行执行,充分利用集群的计算资源。


缓存与持久化(Caching and Persistence)

可以将RDD缓存或持久化到内存或磁盘中,以便在多次使用时避免重复计算,从而提高性能。


丰富的API

RDD提供了丰富的API支持各种操作,包括map、filter、reduceByKey、groupBy、join等,能够满足大部分分布式数据处理的需求。


RDD的特点

分区

RDD逻辑上是分区的,每个分区的数据是抽象存在的,计算的时候通过一个compute函数得到每个分区的数据。如果RDD是通过己有的文件系统构建,则compute函数是读取指定文件系统中的数据,如果RDD是通过其他RDD转换而来,则compute函数是执行转换逻辑将其他RDD的数据进行转换。

只读

RDD是只读的,要想改变RDD中的数据,只能在现有的RDD基础上创建新的RDD。

一个RDD转换为另一个RDD,通过丰富的算子(map filter union join reduceByKey等等)实现,不再像MR那样写Map和Reduce了。

RDD的操作算子包括两类:


Transformation:用来对RDD进行转化,延迟执行(Lazy)

Action:用来出发RDD的计算,得到相关计算结果或者将RDD保存的文件系统中

依赖

RDDs通过操作算子进行转换,转换得到的新RDD包含了从其他RDDs衍生出所必须得信息,RDDs之间维护着这种学院关系(lineage),也称为依赖。


窄依赖:RDDs之间的分区是一一对应的(1对1 或者 n对1)

宽依赖:子RDD每个分区与父RDD的每个分区都有关,是多对多的关系

缓存

可以控制存储级别(内存、磁盘等)来进行缓存

如果在应用程序中多次使用同一个RDD,可以将RDD缓存起来,该RDD只有在第一次计算的时候会根据血缘关系得到分区的数据,在后续其他地方用到该RDD的时候,会直接从缓存取而不用再根据血缘计算,加速后期的重用。 CheckPoint

虽然RDD的血缘关系天然的可以实现容错,当RDD的某个分区失败或者丢失,可以通过血缘关系来进行重建。

但是对于长时间迭代型的应用来说,随着迭代的进行,RDDs之间的血缘关系会越来越长,一旦在后续迭代的过程中出错,则需要 通过非常长的血缘关系去重建,影响性能。

RDD支持CheckPoint将数据保存到持久化的存储中,这样就可以切断之前的血缘关系,因为CheckPoint后的RDD不需要知道它的父RDDs了,可以直接从CheckPoint拿到数据。


Spark编程模型

RDD表示数据对象

通过对象上的方法调用来对RDD进行转换

最终显示结果或者将结果输出到外部数据源

RDD转换算子称为Transformation是Lazy的(延迟执行)

只有遇到 Action算子,才会执行RDD的转换操作

如果要使用Spark,就需要编写Driver程序,它被提交到集群运行。


Driver中定义了一个或多个RDD,并调用RDD上的各种算子

Worker则执行RDD分区计算任务

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
7月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
327 0
|
SQL 分布式计算 大数据
MaxCompute 聚簇优化推荐简介
在大数据计算中,Shuffle 是资源消耗最大的环节之一。MaxCompute 提供聚簇优化推荐功能,通过调整 Cluster 表结构,有效减少 Shuffle 量,显著提升作业性能并节省计算资源。实际案例显示,该功能可帮助用户每日节省数 PB 的 Shuffle 数据量及数千 CU 的计算成本。
203 0
|
9月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
424 79
|
8月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
9月前
|
人工智能 分布式计算 调度
打破资源边界、告别资源浪费:ACK One 多集群Spark和AI作业调度
ACK One多集群Spark作业调度,可以帮助您在不影响集群中正在运行的在线业务的前提下,打破资源边界,根据各集群实际剩余资源来进行调度,最大化您多集群中闲置资源的利用率。
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
546 56
|
11月前
|
存储 分布式计算 调度
Spark Master HA 主从切换过程不会影响到集群已有作业的运行, 为什么?
Spark Master 的高可用性(HA)机制确保主节点故障时,备用主节点能无缝接管集群管理,保障稳定运行。关键在于: 1. **Driver 和 Executor 独立**:任务执行不依赖 Master。 2. **应用状态保持**:备用 Master 通过 ZooKeeper 恢复集群状态。 3. **ZooKeeper 协调**:快速选举新 Master 并同步状态。 4. **容错机制**:任务可在其他 Executor 上重新调度。 这些特性保证了集群在 Master 故障时仍能正常运行。
|
SQL 存储 大数据
单机顶集群的大数据技术来了
大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
552 2