大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节完成的内容如下:


RDD容错机制

RDD分区机制

RDD分区器

RDD自定义分区器

广播变量

基本介绍

有时候需要在多个任务之间共享变量,或者在任务(Task)和 Driver Program 之间共享变量。

为了满足这个需求,Spark提供了两种类型的变量。


广播变量(broadcast variable)

累加器(accumulators)

广播变量、累加器的主要作用是为了优化Spark程序。

广播变量将变量在节点的Executor之间进行共享(由Driver广播),广播变量用来高效分发较大的对象,向所有工作节点(Executor)发送一个较大的只读值,以供一个或多个操作使用。


使用广播变量的过程如下:


对一个类型T的对象调用SparkContext.broadcast创建一个Broadcast[T]对象,任何可序列化的类型都可以这么实现(在Driver端)

通过Value属性访问该对象的值(Executor中)

变量只会被分到各个Executor一次,作为只读值处理

广播变量的相关参数:

  • spark.broadcast.blockSize(缺省值: 4m)
  • spark.broadcast.checksum(缺省值:true)
  • spark.broadcast.compree(缺省值:true)

变量应用

普通JOIN

MapSideJoin

生成数据 test_spark_01.txt

1000;商品1
1001;商品2
1002;商品3
1003;商品4
1004;商品5
1005;商品6
1006;商品7
1007;商品8
1008;商品9

生成数据格式如下:

生成数据 test_spark_02.txt

10000;订单1;1000
10001;订单2;1001
10002;订单3;1002
10003;订单4;1003
10004;订单5;1004
10005;订单6;1005
10006;订单7;1006
10007;订单8;1007
10008;订单9;1008

生成的数据格式如下:

编写代码1

我们编写代码进行测试

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}


object JoinDemo {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("JoinDemo")
      .setMaster("local[*]")

    val sc = new SparkContext(conf)
    sc.hadoopConfiguration.setLong("fs.local.block.size", 128 * 1024 * 1024)

    val productRDD: RDD[(String, String)] = sc
      .textFile("data/test_spark_01.txt")
      .map {
        line => val fields = line.split(";")
          (fields(0), line)
      }

    val orderRDD: RDD[(String, String)] = sc
      .textFile("data/test_spark_02.txt", 8)
      .map {
        line => val fields = line.split(";")
          (fields(2), line)
      }

    val resultRDD = productRDD.join(orderRDD)
    println(resultRDD.count())
    Thread.sleep(100000)
    sc.stop()
  }

}

编译打包1

mvn clean package
• 1

并上传到服务器,准备运行

运行测试1

spark-submit --master local[*] --class icu.wzk.JoinDemo spark-wordcount-1.0-SNAPSHOT.jar
• 1

提交任务并执行,注意数据的路径,查看下图:

运行结果可以查看到,运行了: 2.203100 秒 (取决于你的数据量的多少)



运行结果可以查看到,运行了: 2.203100 秒 (取决于你的数据量的多少)

2024-07-19 10:35:08,808 INFO  [main] scheduler.DAGScheduler (Logging.scala:logInfo(54)) - Job 0 finished: count at JoinDemo.scala:32, took 2.203100 s
200

编写代码2

接下来,我们对比使用 MapSideJoin 的方式

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object MapSideJoin {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("MapSideJoin")
      .setMaster("local[*]")

    val sc = new SparkContext(conf)
    sc.hadoopConfiguration.setLong("fs.local.block.size", 128 * 1024 * 1024)

    val productRDD: RDD[(String, String)] = sc
      .textFile("data/test_spark_01.txt")
      .map {
        line => val fields = line.split(";")
          (fields(0), line)
      }

    val productBC = sc.broadcast(productRDD.collectAsMap())

    val orderRDD: RDD[(String, String)] = sc
      .textFile("data/test_spark_02.txt")
      .map {
        line => val fields = line.split(";")
          (fields(2), line)
      }

    val resultRDD = orderRDD
      .map {
        case (pid, orderInfo) =>
          val productInfo = productBC.value
          (pid, (orderInfo, productInfo.getOrElse(pid, null)))
      }
    println(resultRDD.count())

    sc.stop()
  }

}

编译打包2

mvn clean package
• 1

编译后上传到服务器准备执行:

运行测试2

spark-submit --master local[*] --class icu.wzk.MapSideJoin spark-wordcount-1.0-SNAPSHOT.jar

启动我们的程序,并观察结果

我们可以观察到,这次只用了 0.10078 秒就完成了任务:

累加器

基本介绍

累加器的作用:可以实现一个变量在不同的Executor端能保持状态的累加。

累加器在Driver端定义、读取,在Executor中完成累加。

累加器也是Lazy的,需要Action触发:Action触发一次,执行一次;触发多次,执行多次。


Spark内置了三种类型的累加器,分别是:


LongAccumulator 用来累加整数型

DoubleAccumulator 用来累加浮点型

CollectionAccumulator 用来累加集合元素

运行测试

我们可以在 SparkShell 中进行一些简单的测试,目前我在 h122 节点上,启动SparkShell

spark-shell --master local[*]

启动的主界面如下:

写入如下的内容进行测试:


val data = sc.makeRDD("hadoop spark hive hbase java scala hello world spark scala java hive".split("\\s+"))
val acc1 = sc.longAccumulator("totalNum1")
val acc2 = sc.doubleAccumulator("totalNum2")
val acc3 = sc.collectionAccumulator[String]("allwords")

我们进行测试的结果如下图所示:

继续编写一段进行测试:

val rdd = data.map{word => acc1.add(word.length); acc2.add(word.length); acc3.add(word); word}
rdd.count
rdd.collect

println(acc1.value)
println(acc2.value)
println(acc3.value)

我们进行测试的结果如下:

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
2月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
4月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
107 0
【赵渝强老师】Spark RDD的缓存机制
|
4月前
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
195 15
|
7月前
|
SQL 存储 大数据
单机顶集群的大数据技术来了
大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。
|
6月前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
218 0
|
1月前
|
存储 机器学习/深度学习 人工智能
数据与生命的对话:当大数据遇上生物信息学
数据与生命的对话:当大数据遇上生物信息学
74 17
|
25天前
|
机器学习/深度学习 存储 分布式计算
数据科学 vs. 大数据:一场“烧脑”但有温度的较量
数据科学 vs. 大数据:一场“烧脑”但有温度的较量
78 2
|
1月前
|
存储 SQL 分布式计算
别让你的数据“裸奔”!大数据时代的数据隐私保护实战指南
别让你的数据“裸奔”!大数据时代的数据隐私保护实战指南
97 19
|
3月前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践