一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

本文涉及的产品
性能测试 PTS,5000VUM额度
简介:
本文来自AI新媒体量子位(QbitAI)

Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长……

没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。

硬件清单

之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算,我给这套系统的总预算是1700美元(约11650元)。

GPU

肯定得买Nvidia,没有其他选择。买两块还是一块?我想了想,还是先买一个性能更好的,以后有钱了再增加。综合显存、带宽等因素,我最终选了GTX 1080 Ti,跟Titan X相比,性能差不了多少,但价格便宜不少。

CPU

虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。

内存

两条16GB容量的内存,总共是32GB。

硬盘

两块。

一块SSD硬盘运行操作系统和当前数据,我选的是MyDigitalSSD NVMe 480GB。一块速度较慢的2TB容量HDD硬盘存储大的数据集(例如ImageNet)。

主板

为了以后的拓展,我得选能支持两块GTX 1080 Ti的主板。最后的选择是:华硕TUF Z270。

电源

得为GPU何GPU们提供足够的电力供应。英特尔i5 7500功耗是65W,一块1080Ti需要250W(以后还想加一块),所以最后选择了Deepcool 750W Gold PSU。

机箱

我听从朋友的建议,选了Thermaltake N23机箱。只是没有LED灯,伤心。

组装

组装过程按下不表,装机也是个手艺,最后效果如下图所示。

安装软件

提示:如果你想装Windows系统,最好先安装Windows,再装Linux。要不然Windows会搞乱启动分区。

安装Ubuntu

大部分深度学习框架都工作在Linux环境中,所以我选择安装Ubuntu。一个2GB容量的U盘就能搞定安装,如何制作?

  • OSX用户参考这里:

https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-macos

  • Windows用户参考这里:

https://rufus.akeo.ie/

我写这个教程的时候,Ubuntu 17.04版本刚刚发布,但是我选择了之前的16.04版本,因为老版本的相关文档可能更全一点。另外,我选择的是Ubuntu桌面版本,不过关闭了图形界面X,电脑启动会进入终端模式。

如果需要图形界面,只需要输入:startx

及时更新

更新可以使用下面这个命令

深度学习堆栈

为了展开深度学习,我们需要如下软件来使用GPU:

  • GPU驱动:让操作系统和显卡可以对话
  • CUDA:能让GPU运行通用目的代码
  • CuDNN:CUDA之上的神经网络加速库
  • 深度学习框架:TensorFlow等

安装GPU驱动

最新的驱动,可以参考官网

http://nvidia.com/Download/index.aspx

或者直接使用如下代码安装:

安装CUDA

可以从Nvidia下载CUDA,地址如下:

https://developer.nvidia.com/cuda-downloads

或者直接运行如下的代码:

安装好CUDA之后,下面的代码能把CUDA添加到PATH变量:

现在可以检验一下CUDA装好没有,运行如下代码即可:

删除CUDA或GPU驱动,可以参考如下代码:

安装CuDNN

我用的是CuDNN 5.1,因为最新的TensorFlow不支持CuDNN 6。下载CuDNN,你需要创建一个免费的开发者账号。下载之后,用如下命令安装。

Anaconda

Anaconda是一个很棒的Python软件包管理器,我现在使用了Python 3.6版本,所以对应的使用Anaconda 3版本,安装如下:

TensorFlow

最流行的深度学习框架,安装:

为了检查一下TensorFlow安装好没有,可以运行MNIST看看:

应该能在训练过程中,看到loss的逐渐减少:

Keras

一个高级神经网络框架,安装非常简单:

PyTorch

深度学习框架届的新兵,但也值得推荐,安装命令:

Jupyter notebook

Jupyter是一个交互式的笔记本,随着Anaconda安装,我们要配置和测试一下:

现在打开 http://localhost:8888 ,应该就能看到Jupyter的界面。

我们可以把Jupyter设置成自动启动,使用crontab来设置。运行crontab -e,然后把如下代码添加在最后。

测试

现在基本上准备妥当了,是时候测试一下了。参加此次对比的几个选手是:

  • AWS P2实例GPU(K80)
  • AWS P2虚拟CPU
  • 英伟达GTX 1080 Ti
  • 英特尔i5 7500

MNIST多层感知器

MNIST数据集由70000手写数字组成。我们在这个数据集上运行了一个使用多层感知器(MLP)的Keras案例,代码地址:

https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py

MLP的意思是只使用全连接的层,而不用卷积。这个模型在这个数据集上进行了20次训练,实现了超过98%的准确率。

可以看到在训练这个模型时,GTX 1080 Ti比AWS P2 K80快2.4倍,这有点惊人,因为两个显卡的性能应该差不多,我觉得可能是AWS上有降频或者受到虚拟化的影响。

CPU的表现比GPU慢9倍。有趣的是,i5 7500比亚马逊的虚拟CPU快2.3倍。

VGG微调

为Kaggle猫狗识别竞赛而微调一个VGG网络。使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。代码如下:

https://github.com/slavivanov/cats_dogs_kaggle

这次1080 Ti比AWS P2 K80快5.5倍。CPU在这个环节的表现,最多慢了200倍。

Wasserstein GAN

生成对抗网络(GAN)用来训练模型产生图像。Wasserstein GAN是原始GAN的一个改进版。我这里用了一个PyTorch实现,代码地址:

https://github.com/martinarjovsky/WassersteinGAN

这个模型需要50步训练,CPU在这个训练中不予考虑。

GTX 1080 Ti比AWS P2 K80快5.5倍。

风格迁移

最后一个测试是在TensorFlow上的风格迁移实现,代码地址:

https://github.com/slavivanov/Style-Tranfer

GTX 1080 Ti比AWS P2 K80快4.3倍。CPU比GPU慢30-50倍。

好啦,关于万元打造一个深度学习系统的分享,就先到这里。

各位端午节快乐。

【完】

本文作者:Slav Ivanov@blog.slavv.com
原文发布时间:2017-05-30
相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
【硬件测试】基于FPGA的1024QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的1024QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同SNR条件下的性能测试。1024QAM调制将10比特映射到复平面上的1024个星座点之一,实现高效数据传输。硬件测试结果表明,在SNR=32dB和40dB时,系统表现出良好的性能。Verilog核心程序展示了各模块的连接与功能实现。
60 7
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
307 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
229 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
【硬件测试】基于FPGA的QPSK调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现QPSK调制与软解调系统,包含Testbench、高斯信道、误码率统计模块,并支持不同SNR设置。硬件版本新增ILA在线数据采集和VIO在线SNR设置功能,提供无水印完整代码及测试结果。通过VIO分别设置SNR为6dB和12dB,验证系统性能。配套操作视频便于用户快速上手。 理论部分详细解析QPSK调制原理及其软解调实现过程,涵盖信号采样、相位估计、判决与解调等关键步骤。软解调通过概率估计(如最大似然法)提高抗噪能力,核心公式为*d = d_hat / P(d_hat|r[n])*,需考虑噪声对信号点分布的影响。 附Verilog核心程序代码及注释,助力理解与开发。
57 5
【硬件测试】基于FPGA的2ASK+帧同步系统开发与硬件片内测试,包含高斯信道,误码统计,可设置SNR
本文分享了基于FPGA的2ASK+帧同步系统硬件测试版本,包含ILA数据采集、VIO SNR设置及数据源模块。通过调整SNR(如45dB和10dB),实现对调制解调性能的验证。2ASK调制将数字信号转为二进制码,通过载波振幅变化传输;帧同步用于确定帧起始位置,确保数据正确解调。附带操作视频与核心Verilog代码,便于理解和复现。
44 9
【硬件测试】基于FPGA的MSK调制解调系统系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现MSK调制解调系统,采用Verilog开发,包含同步模块、高斯信道模拟、误码率统计等功能。相比仿真版本,新增ILA数据采集与VIO在线SNR设置模块。通过硬件测试验证,展示不同SNR(如10dB和16dB)下的性能表现。研究聚焦软件无线电领域,优化算法复杂度以适应硬件限制,利用MSK恒定包络、相位连续等特性提升频谱效率。核心代码实现信号生成、调制解调、滤波及误码统计,提供完整的硬件设计与分析方案。
93 19
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
145 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
【硬件测试】基于FPGA的4ASK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的4ASK调制解调系统的硬件测试版本,该系统包括testbench、高斯信道模块和误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置功能。通过VIO设置不同SNR(如15dB和25dB),实现了对系统性能的实时监测与调整。4ASK是一种通过改变载波幅度表示数据的数字调制方式,适用于多种通信场景。FPGA平台的高效性和灵活性使其成为构建高性能通信系统的理想选择。
83 17
【硬件测试】基于FPGA的16QAM调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前开发的16QAM调制与软解调系统,增加了硬件测试功能。该系统包含FPGA实现的16QAM调制、软解调、高斯信道、误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置模块。通过硬件测试,验证了不同SNR条件下的系统性能。16QAM软解调通过比较接收信号采样值与16个调制点的距离,选择最近的调制点来恢复原始数据。核心Verilog代码实现了整个系统的功能,包括SNR设置、信号处理及误码率统计。硬件测试结果表明系统在不同SNR下表现良好,详细操作步骤可参考配套视频。
67 13
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
176 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

量子位

+ 订阅

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等