开发者社区> 桃子红了呐> 正文

Sphinx 的介绍和原理探索——不存储原始数据,原始数据来源于SQL,而生成索引放在内存或者磁盘中

简介:
+关注继续查看

摘自:http://blog.jobbole.com/101672/

What/Sphinx是什么

定义:Sphinx是一个全文检索引擎。

特性:

  • 索引和性能优异
  • 易于集成SQL和XML数据源,并可使用SphinxAPI、SphinxQL或者SphinxSE搜索接口
  • 易于通过分布式搜索进行扩展
  • 高速的索引建立(在当代CPU上,峰值性能可达到10 ~ 15MB/秒)
  • 高性能的搜索 (在1.2G文本,100万条文档上进行搜索,支持高达每秒150~250次查询)

Why/为什么使用Sphinx

遇到的使用场景

遇到一个类似这样的需求:用户可以通过文章标题和文章搜索到一片文章的内容,而文章的标题和文章的内容分别保存在不同的库,而且是跨机房的。

可选方案

A、直接在数据库实现跨库LIKE查询

优点:简单操作 缺点:效率较低,会造成较大的网络开销

B、结合Sphinx中文分词搜索引擎

优点:效率较高,具有较高的扩展性 缺点:不负责数据存储

使用Sphinx搜索引擎对数据做索引,数据一次性加载进来,然后做了所以之后保存在内存(或磁盘)。这样用户进行搜索的时候就只需要在Sphinx服务器上检索数据即可。而且,Sphinx没有MySQL的伴随机磁盘I/O的缺陷,性能更佳。

How/如何使用Sphinx

Sphinx工作流程图:

Sphinx工作流程图

流程图解释:

  • Database:数据源,是Sphinx做索引的数据来源。因为Sphinx是无关存储引擎、数据库的,所以数据源可以是MySQL、PostgreSQL、XML等数据。
  • Indexer:索引程序,从数据源中获取数据,并将数据生成全文索引。可以根据需求,定期运行Indexer达到定时更新索引的需求。
  • Searchd:Searchd直接与客户端程序进行对话,并使用Indexer程序构建好的索引来快速地处理搜索查询。
  • APP:客户端程序。接收来自用户输入的搜索字符串,发送查询给Searchd程序并显示返回结果。

倒排索引

倒排索引是一种数据结构,用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。它是文档检索系统中最常用的数据结构。

倒排索引(Inverted Index):倒排索引是实现“单词-文档矩阵”的一种具体存储形式,通过倒排索引,可以根据单词快速获取包含这个单词的文档列表。

传统的索引是:索引ID->文档内容,而倒排索引是:文档内容(分词)->索引ID。可以类比正向代理和反向代理的区别来理解。正向代理把内部请求代理到外部,反向代理把外部请求代理到内部。所以应该理解为转置索引比较合适。

倒排索引主要由两个部分组成:“单词词典”和“倒排文件”。

复制代码
index employeesSalariesIndex
{
  type = plain
  source = employeesSalariesSource
  path = /home/fkereki/bin/sphinx/var/data/sphinxFilesESI
  charset_type = utf-8
  preopen = 1
}
复制代码

Sphinx 使用的索引文件独立于 MySQL 使用的索引文件。type=plain 行表示您正在使用标准的 Sphinx 索引文件。其他可能的索引是 distributed(当您具有在网络的几个节点分布的索引文件时)和 rt(表示 real time),您可以立刻更新这些索引。source= 行将一个数据源与一个索引相关联。您可以在一个索引中合并几个数据源,但是在本示例中没有这样做。path= 行定义索引文件名称及其存储位置。

单词词典是倒排索引中非常重要的组成部分,它用来维护文档集合中出现过的所有单词的相关信息,同时用来记载某个单词对应的倒排列表在倒排文件中的位置信息。在支持搜索时,根据用户的查询词,去单词词典里查询,就能够获得相应的倒排列表,并以此作为后续排序的基础。

对于一个规模很大的文档集合来说,可能包含几十万甚至上百万的不同单词,能否快速定位某个单词直接影响搜索时的响应速度,所以需要高效的数据结构来对单词词典进行构建和查找,常用的数据结构包括哈希加链表结构和树形词典结构。














本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6249050.html,如需转载请自行联系原作者


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
Oracle ASM磁盘和磁盘组的常用SQL语句
Oracle ASM磁盘和磁盘组的常用SQL语句
56 0
Polardb-X 多存储节点下sql执行计划
在单机上创建polardb-X两存储节点集群,查看执行计划
106 0
SQL Server 高可用性(三)共享磁盘
SQL Server 高可用性(三)共享磁盘
179 0
第3期 全栈开发MongoDB与SQL存储
全栈开发MongoDB与SQL存储
67 0
基于 MySQL + Tablestore 分层存储架构的大规模订单系统实践-SQL 查询和分析
前言前面我们介绍了基于 MySQL + Tablestore 分层架构的订单系统。订单数据储存进入 Tablestore 后,用户可以使用 SDK 中的 API 访问数据,也可以继续使用 SQL 访问 Tablestore 中的数据。Tablestore 提供了多种 SQL 的接入方式,客户可以通过 DLA 访问 Tablestore,也可以利用 Tablestore 自身对 SQL 的支持能力,
604 0
【巡检问题分析与最佳实践】RDS SQL Server 磁盘IO吞吐高问题
实例的磁盘IO负载是RDS SQL Server用户日常应重点关注的监控项之一,如果磁盘IO压力过大,很容易导致数据库性能问题。
588 0
MaxCompute 费用暴涨之存储压缩率降低导致SQL输入量变大
现象:同样的SQL,每天处理的数据行数差不多,但是费用突然暴涨甚至会翻数倍。 分析: 我们先明确MaxCompute SQL后付费的计费公式:一条SQL执行的费用=扫描输入量 ️ SQL复杂度 ️ 0.3(¥/GB)。
3448 0
PostgreSQL 10.1 手册_部分 II. SQL 语言_第 10 章 类型转换_10.4. 值存储
10.4. 值存储 将被插入到一个表的值会按照下列步骤被转换到目标列的数据类型。 值存储类型转换 检查一个与目标的准确匹配。 否则,尝试转换表达式为目标类型。如果在两种类型之间的一个 赋值造型已经被注册在pg_cast 目录(见CREATE CAST)中, 这是可能的。
977 0
MyBatis学习笔记】10:#和$,sql元素,resultMap的结构/构造器,存储结果集
MyBatis学习笔记】10:#和$,sql元素,resultMap的结构/构造器,存储结果集 在MyBatis的SQL中使用#{}和${}都会被视为特殊字符串来处理。前者是设置了参数,MyBatis会将参数设置到语句中(默认是PreparedStatement)。
1600 0
文章
问答
文章排行榜
最热
最新
相关电子书
更多
用SQL做数据分析
立即下载
阿里云流计算 Flink SQL 核心功能解密
立即下载
Comparison of Spark SQL with Hive
立即下载