神经网络预测mnist时候如果不归一化,则准确率仅仅10%下文作者svm也遇到了。

简介:

转自:http://blog.csdn.net/jeryjeryjery/article/details/72649320

这两天用Python来实现手写数字识别,刚开始用原始数据进行训练,结果预测结果都是同一个类别,全部是对应数字1。正确率也只有10%左右,下面是代码及运行结果截图: 
这里写图片描述

预测结果都是数字1。

  数据归一化是指将特征值从一个大范围映射到[0,1]或者[-1,1],如果原始值都是正数,则建议选择映射到[0,1];如果原始值有正数又有负数,则建议映射到[-1,1];具体情况需要具体分析。映射到[0,1]的实现是: 

new_value=valuemin_valuemax_valuemin_value


这样就能实现从原来的范围映射到[0,1]之间。 
libsvm中提供了数据归一化工具,就是svm-scale这个工具。如果你的数据文件已经满足了svm的格式要求,即labele1e2 这种格式,那么在window平台下,你可以直接调用libsvm\windows\svm-scale.exe文件来进行归一化操作。具体步骤是在cmd命令行中进入到svm-scale.exe所在文件夹,然后运行svm-scale来实现归一化。svm-scale的语法截图如下: 
scale语法 
其中-l 指定下界,-u指定上界,-s指定保存scale参数文件路径,-r源文件路径

下面以数据源train.txt为例,将其归一化到[0,1],并存入到train-to-one.txt中,语句截图如下: 
这里写图片描述

  因为手写数字图片是由一系列的像素点组成的,像素值从0到255,所以可以让每一个像素值除以255,从而实现映射。可以调用svm-scale来实现,也可以直接编写java代码来实现,然后再以归一化之后的数据进行训练模型并预测,其代码和截图如下: 
归一化数据

可以看出,准确率和速率明显提高了,不会出现仅仅只有一类的问题。但是其中的原理,本人现在还不知道,等我理解了再解释吧!
















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7880916.html,如需转载请自行联系原作者


相关文章
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
2天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
4月前
|
机器学习/深度学习 数据采集 算法
一文搞懂 卷积神经网络 批归一化 丢弃法
这篇文章详细介绍了卷积神经网络中的批归一化(Batch Normalization)和丢弃法(Dropout),包括它们的计算过程、作用、优势以及如何在飞桨框架中应用这些技术来提高模型的稳定性和泛化能力,并提供了网络结构定义和参数计算的示例。
|
1月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现
【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现
|
4月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API三种搭建神经网络的方式及以mnist举例实现
使用Keras API构建神经网络的三种方法:使用Sequential模型、使用函数式API以及通过继承Model类来自定义模型,并提供了基于MNIST数据集的示例代码。
63 12
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
神经网络中的归一化
**神经网络中的归一化方法加速和稳定学习,避免梯度问题。通过批量归一化(Batch Normalization),每个mini-batch数据被调整至均值0、标准差1的分布,减少数据分布变化带来的不稳定性,提升模型训练速度与泛化能力。归一化也包括L1和L2正则化,如sklearn库中的Lasso和Ridge实现。批量归一化层如PyTorch中的`nn.BatchNorm2d`,调整输入数据分布并学习可变参数。**
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享
R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享
|
7月前
|
机器学习/深度学习 算法 数据挖掘
R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据
R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据
|
7月前
|
机器学习/深度学习 算法 TensorFlow
【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享
【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享