R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据

简介: R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据

我们被客户要求撰写关于气象集成预报技术的研究报告,包括一些图形和统计输出。在实际应用中,对每个具体的问题,各种预报方法得出的结果通常是不一致的,因而不知道如何将它们统一起来。因此需要采用一种较好的处理方法,把不同预报方法对同一要素的多种预报结果综合在一起,从而得出一个优于单一预报方法的预报结论,这就是预报方法的集成问题。

本文分析了传统的基于加权的集成预报方法及其在气象预测应用中存在的问题,在此基础上提出了一种新的基于数据挖掘的集成预报方法,该方法选用BP人工神经网络建立集成预报分类器,对文中BP人工神经网络、多元回归、SVM、决策树模型四种子预报方法的预报结果进行集成和综合。

基于数据挖掘的集成预报方法利用从子预报方法中筛选的训练集进行训练,得到集成预报分类器;该集成预报分类器可以根据环流因子的输入,直接得到一种最优子预报方法,然后利用得到的最优子预报方法去预测,将最优子预报方法的预报结果作为集成预 报的预报结果。


实验数据集描述


实验使用的输入数据是环流因子,是由国家气候中心气候系统诊断预测室再处理资料,资料数据全都为整型。


环流因子数据

30年降水数据

本文介绍了四种常见的气象子预报方法:BP人工神经网络、多元回归、SVM、决策树模型,并通过实际的数据集进行预报检验。从实验结果可以得出,对于不同的预报环境和预报样本,并没有哪一种子预报方法的预报结果能够保证始终是最优的。

环流因子=read.csv("环流因子.csv") 
降水数据=read.csv("30年降水数据.csv")


转换降水数据


y=0  
   
 for(i in 2:ncol(降水数据)){  
 y=c(y,降水数据[,i])
 
 
 环流因子=环流因子[1:length(yy),]  
   
 datanew=data.frame(降水数据=yy,环流因子[,-1])

 


多元回归


model=lm(降水数据~.,data=datanew)

plot(datanew[,2:1])  
 abline(model)

点击标题查阅往期内容


ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测


01

02

03

04

svm支持向量机


现在我们在训练集上使用来训练线性SVM

##  
##  
## Parameters:  
##    SVM-Type:  eps-regression  
##  SVM-Kernel:  radial  
##        cost:  1  
##       gamma:  0.01351351  
##     epsilon:  0.1  
##  
##  
## Number of Support Vectors:  107


绘制拟合图

points(datanew[,2], predictedY, col = "red", pch=4)

mse <- function(error)  
 {  
   sqrt(mean(error^2))  
 }
 
## [1] 599.4382


决策树


绘制决策树

## Variables actually used in tree construction:  
## [1] X.19 X.30 X.57 X.72 X.73  
##  
## Root node error: 328275991/372 = 882462
draw.tree(CARTmodel)

根据cp值对决策树进行剪枝

cable[which.min(CARTmodel$cptable[,"xerror"]),"CP"]


对数据进行预测


plot(tree.pred,  datanew.test$降水数据 )  
 abline(0,1)

神经网络


y=datanew$降水数据  
#  y<-data.frame((y-min(y))/(max(y)-min(y)))  
 names(y)<-'y'  
   
 mod1<-nnet(datanew
 
 summary(mod1)
## a 75-10-1 network with 771 weights  
## options were - linear output units  
##   b->h1  i1->h1  i2->h1  i3->h1  i4->h1  i5->h1  i6->h1  i7->h1  i8->h1  
##   -0.26    0.53   -0.19    0.00   -0.39   -0.57    0.40   -0.05    0.54  
##  i9->h1 i10->h1 i11->h1 i12->h1 i13->h1 i14->h1 i15->h1 i16->h1 i17->h1  
##    0.57   -0.51    0.53    0.66   -0.18   -0.15    0.36   -0.67   -0.54  
## i18->h1 i19->h1 i20->h1 i21->h1 i22->h1 i23->h1 i24->h1 i25->h1 i26->h1  
   
##   h9->o  h10->o  
##   47.66   55.81


模型集成


在实际应用中,对每个具体的问题,各种预报方法得出的结果通常是不一致的,因而不知道如何将它们统一起来。一般地,每个具体预报方法的预报思想不同,其适应的具体环境也就不同,得到的预报结果的准确程度也不相同,对某类数据有较好预报结果的方法,对其它数据不一定有较好结果。因此需要采用一种较好的处理方法,把不同数值模式对同一要素的多种预报结果综合集成在一起,从而得出一个优于单一预报方法的预报结论,这就是预报方法的集成问题。

尽管常用的集成预报方法有回归集成、平均集成、多数表决和加权集成预报方法等,然而这些集成预报方法本质上属于一种基于加权的集成方法。

本文方法的大致思想如下:以各子预报方程的历史拟合样本作为神经网络集成预报模型学习矩阵输入,相应的预报量序列作为学习矩阵的期望输出。只是确定权值的方式是不断地进行学习训练,权值存在于复杂的人工神经网络结构中,并不是线性和容易理解的。最后,把该子预报方法的预报结果作为集成预报方法的预报结果。


使用神经网络对训练结果进行集成

mod1<-nnt(trainerror,y,sizout=T)
 
 ## # weights:  61  
## initial  value 526570419.869292  
## iter  10 value 119410102.980870  
## iter  20 value 25370475.287456  
## final  value 25370458.492646  
## converged
summary(mod1)
## a 4-10-1 network with 61 weights  
## options were - linear output units  
##   b->h1  i1->h1  i2->h1  i3->h1  i4->h1  
##    0.37  148.56  162.50   -2.06    2.30  
##   b->h2  i1->h2  i2->h2  i3->h2  i4->h2  
##    0.48  -56.65   46.85    2.23   -1.23  
##   b->h3  i1->h3  i2->h3  i3->h3  i4->h3  
##   -0.11    7.56   15.11   -1.18    1.41  
##   b->h4  i1->h4  i2->h4  i3->h4  i4->h4  
##    0.42  -14.15  -11.55    1.49   -1.12  
##   b->h5  i1->h5  i2->h5  i3->h5  i4->h5  
##   -0.34   57.24   79.60 -176.40    6.91  
##   b->h6  i1->h6  i2->h6  i3->h6  i4->h6  
##   -0.44   -0.22    6.17    0.82   -0.01  
##   b->h7  i1->h7  i2->h7  i3->h7  i4->h7  
##    0.03   -0.14   -0.61    0.04   -0.14  
##   b->h8  i1->h8  i2->h8  i3->h8  i4->h8  
##   -0.34   65.01  -72.91  -10.22    9.67  
##   b->h9  i1->h9  i2->h9  i3->h9  i4->h9  
##    0.20   -1.31   14.80    0.90   -0.73  
##  b->h10 i1->h10 i2->h10 i3->h10 i4->h10  
##   -0.46   -2.63  -23.62   -0.60    1.51  
##    b->o   h1->o   h2->o   h3->o   h4->o   h5->o   h6->o   h7->o   h8->o  
##  368.20 -340.26   -4.79 4963.64 -158.47  517.21   24.37   -5.77   23.41  
##   h9->o  h10->o  
##   30.60  336.40


绘制拟合数据


相关文章
|
4天前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
2天前
|
SQL 安全 算法
网络安全与信息安全:保护数据的关键策略
【7月更文挑战第17天】在数字化时代的浪潮中,网络安全和信息安全的重要性日益凸显。本文将深入探讨网络安全漏洞的成因、影响以及防范措施,同时分析加密技术在保障信息传输安全中的应用,并强调提高个人与企业的安全意识在防御网络威胁中的核心作用。文章旨在为读者提供全面的网络安全知识框架,帮助构建更为坚固的防护墙,确保数据资产的安全。
|
6天前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
27天前
|
XML 数据采集 前端开发
四:《智慧的网络爬虫》— 数据解析之xpath解析
本篇文章主要讲述了数据解析中的xpath解析,及相对路径的定位语法。最后以爬取豆瓣top250首页作为示例总结
42 5
四:《智慧的网络爬虫》—  数据解析之xpath解析
|
1月前
|
机器学习/深度学习 搜索推荐 算法
基于深度学习神经网络协同过滤模型(NCF)的图书推荐系统
登录注册 热门图书 图书分类 图书推荐 借阅图书 购物图书 个人中心 可视化大屏 后台管理
12935 2
基于深度学习神经网络协同过滤模型(NCF)的图书推荐系统
|
12天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ&gt;0增强集成效果,提高预测准确性和系统稳健性。
|
18天前
|
机器学习/深度学习 数据采集 搜索推荐
打开黑盒神经网络!港大推出全新会说话的推荐系统大模型XRec,从黑盒预测到可解释
【7月更文挑战第2天】港大研发XRec模型,将可解释性引入推荐系统。XRec结合大型语言模型的语义理解与协同过滤,生成推荐的文本解释,提升透明度。该模型无关设计允许与各类推荐系统配合,增强用户体验。然而,计算资源需求高、数据质量和用户理解能力可能影响其效果。[查看论文](https://arxiv.org/pdf/2406.02377)**
28 11
|
15天前
|
安全 算法 网络安全
网络安全与信息安全:保护数据的关键策略
【7月更文挑战第4天】在数字化时代,网络安全和信息安全已成为组织和个人不可忽视的议题。本文将深入探讨网络安全漏洞的成因、当前加密技术的应用以及提升安全意识的重要性。文章旨在为读者提供一套综合性的知识体系,帮助他们更好地理解和应对网络环境中的安全威胁。
26 3
|
21天前
|
JSON 数据可视化 API
技术心得:如何用Python和API收集与分析网络数据?
技术心得:如何用Python和API收集与分析网络数据?
21 2
|
23天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:图神经网络(GNN)
使用Python实现深度学习模型:图神经网络(GNN)
36 1

热门文章

最新文章