Unity应用架构设计(7)——IoC工厂理念先行

简介:

一谈到 『IoC』,有经验的程序员马上会联想到控制反转,将创建对象的责任反转给工厂。IoC是依赖注入 『DI』 的核心,大名鼎鼎的Spring框架就是一个非常卓越的的控制反转、依赖注入框架。遗憾的是,我们显然不能在Unity 3D中去使用Spring框架,但思想是相通的——IoC也好,控制反转也罢,本质上是一个工厂,或者又被称为容器,我们可以自己维护一个工厂来实现对对象的管理,这也是本文的核心内容。

工厂模式初探

工厂,顾名思义,就是生产对象的地方。如果之前没有接触过设计模式,你可能会疑惑,我直接使用 『new』 关键字难道不能创建对象吗?为什么还要大费周章的让工厂来创建?当然这是没错的,直接使用 『new』 关键字很简洁,也很易懂,但你考虑过对象的释放吗?你可能会说不用考虑啊,GC会帮我们回收啊。

其实问题就出在这里,因为你没有考虑对象管理的动机,所以就不会有工厂这个概念。试想一下,使用ADO.NET或者JDBC去访问数据库,我们是不是要先建立一个Connection,当工作结束后,Close了这个连接。当再一次需要连接数据库时,再建立一次Connection,这背后其实有隐患。因为和数据库建立连接是非常耗时的,只是我们感受不到。我们能不能在关闭连接时,不销毁对象,而是将其放到一个对象池,当下一次请求来时,直接从对象池中获取。这就是工厂的动机,对对象的创建和释放进行管理,这样可以有效的提高效率。

注:释放指的是对象实现了IDisposable接口的非托管资源,在uMVVM框架,工厂维护的都是托管资源,销毁由GC决定

工厂的分类

在uMVVM框架中,我将工厂分为三类:单例(Singleton),临时(Transient),池(Pool)。

  • Singleton :该工厂生产的对象是单例的,即一旦生产出来的对象将处理所有的请求,不会因为不同的请求而产生新的对象,通常需要考虑多线程并发问题
  • Transient :该工厂生产的对象是临时的,转瞬即逝的,即每一次请求产生一个新对象,处理请求完毕后就被销毁
  • Pool:该工厂并不会无限的创建对象,取而代之的是内部维护了一个对象池,当请求来时,从对象池中获取,当请求处理完毕后,对象也不会被销毁,而是再次放回对象池中

我们可以为这三种工厂声明公共的接口:IObjectFactory,这是非常有必要的,方便在运行时根据需求动态的切换不同工厂:

public interface IObjectFactory
{
    object AcquireObject(string className);
    object AcquireObject(Type type);
    object AcquireObject<TInstance>() where TInstance : class, new();
    void ReleaseObject(object obj);
}

这个接口功能很简单,通过统一的入口对对象进行创建与销毁的管理。

Singleton Factory

有了统一的工厂的接口之后,接下来就是去实现对应的工厂了,第一个要实现的就是 Singleton Factory:

public class SingletonObjectFactory:IObjectFactory
{
    /// <summary>
    /// 共享的字典,不会因为不同的SingletonObjectFactory对象返回不唯一的实例对象
    /// </summary>
    private static Dictionary<Type,object> _cachedObjects = null;
    private static readonly object _lock=new object();
    private Dictionary<Type, object> CachedObjects
    {
        get
        {
            lock (_lock)
            {
                if (_cachedObjects==null)
                {
                    _cachedObjects=new Dictionary<Type, object>();
                }
                return _cachedObjects;
            }
        }
    }

    //...省略部分代码...

    public object AcquireObject<TInstance>() where TInstance:class,new()
    {
        var type = typeof(TInstance);
        if (CachedObjects.ContainsKey(type))
        {
            return CachedObjects[type];
        }
        lock (_lock)
        {
            var instance=new TInstance();
            CachedObjects.Add(type, instance);
            return CachedObjects[type];
        }
    }

}

上述代码中,我们需要定义一个全局的字典,用来存储所有的单例,值得注意的是,CachedObjects 字典是一个 static 类型,这表明这是一个共享的字典,不会因为不同的SingletonObjectFactory对象返回不唯一的实例对象。

还有一点,单例模式最好考虑一下多线程并发问题,虽然这是一个 『伪』 需求,毕竟Unity 3D是个单线程应用程序,但 uMVVM 框架还是考虑了多线程并发的问题,使用 lock 关键字,它必须是一个 static 类型,保证 lock 了同一个对象。

Transient Factory

Transient Factory 是最容易实现的工厂,不用考虑多线程并发问题,也不用考虑Pool,对每一次请求返回一个不同的对象:

public class TransientObjectFactory : IObjectFactory
{
    //...省略部分代码...

    public object AcquireObject<TInstance>() where TInstance : class, new()
    {
        var instance = new TInstance();
        return instance;
    }

}

Pool Factory

Pool Factory 相对来说是比较复杂的工厂,它对 Transient Factory 进行了升级——创建实例前先去Pool中看看是否有未被使用的对象,有的话,那么直接取出返回,如果没有则向Pool中添加一个。

Pool的实现有两种形式,一种是内置了诸多对象,还有一种是初始时是一个空的池,然后再往里面添加对象。第一种效率更高,直接从池里面拿,而第二种更省内存空间,类似于懒加载,uMVVM 的对象池技术使用第二种模式。

public class PoolObjectFactory : IObjectFactory
{
    /// <summary>
    /// 封装的PoolData
    /// </summary>
    private class PoolData
    {
        public bool InUse { get; set; }
        public object Obj { get; set; }
    }

    private readonly List<PoolData> _pool;
    private readonly int _max;
    /// <summary>
    /// 如果超过了容器大小,是否限制
    /// </summary>
    private readonly bool _limit;

    public PoolObjectFactory(int max, bool limit)
    {
        _max = max;
        _limit = limit;
        _pool = new List<PoolData>();
    }

    private PoolData GetPoolData(object obj)
    {
        lock (_pool)
        {
            for (var i = 0; i < _pool.Count; i++)
            {
                var p = _pool[i];
                if (p.Obj == obj)
                {
                    return p;
                }
            }
        }
        return null;
    }
    /// <summary>
    /// 获取对象池中的真正对象
    /// </summary>
    /// <param name="type"></param>
    /// <returns></returns>
    private object GetObject(Type type)
    {
        lock (_pool)
        {
            if (_pool.Count > 0)
            {
                if (_pool[0].Obj.GetType() != type)
                {
                    throw new Exception(string.Format("the Pool Factory only for Type :{0}", _pool[0].Obj.GetType().Name));
                }
            }

            for (var i = 0; i < _pool.Count; i++)
            {
                var p = _pool[i];
                if (!p.InUse)
                {
                    p.InUse = true;
                    return p.Obj;
                }
            }


            if (_pool.Count >= _max && _limit)
            {
                throw new Exception("max limit is arrived.");
            }

            object obj = Activator.CreateInstance(type, false);
            var p1 = new PoolData
            {
                InUse = true,
                Obj = obj
            };
            _pool.Add(p1);
            return obj;
        }
     }

    private void PutObject(object obj)
    {
        var p = GetPoolData(obj);
        if (p != null)
        {
            p.InUse = false;
        }
    }

    public object AcquireObject(Type type)
    {
        return GetObject(type);
    }

    public void ReleaseObject(object obj)
    {
        if (_pool.Count > _max)
        {
            if (obj is IDisposable)
            {
                ((IDisposable)obj).Dispose();
            }
            var p = GetPoolData(obj);
            lock (_pool)
            {
                _pool.Remove(p);
            }
            return;
        }
        PutObject(obj);
    }
}

上述的代码通过构造函数的 max 决定Pool的大小,limit 参数表示超过Pool容量时,是否可以再继续往Pool中添加数据。方法 GetObject 是最核心的方法,逻辑非常简单,获取对象之前先判断Pool中是否有未被使用的对象,如果有,则返回,如果没有,则根据 limit 参数再决定是否可以往Pool中添加数据。

小结

工厂模式是最常见的设计模式,根据工厂的类型可以获取不同形式的数据对象,比如单例数据、临时数据、亦或是对象池数据。这一章的工厂模式很重要,也是对下一篇对象的注入『Inject』做准备,故称之为理念先行。
源代码托管在Github上,点击此了解

本博客为 木宛城主原创,基于 Creative Commons Attribution 2.5 China Mainland License发布,欢迎转载,演绎或用于商业目的,但是必须保留本文的署名 木宛城主(包含链接)。如您有任何疑问或者授权方面的协商,请给我留言。

本文转自木宛城主博客园博客,原文链接:http://www.cnblogs.com/OceanEyes/p/factory_pattern.html,如需转载请自行联系原作者
目录
相关文章
|
29天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
6天前
|
容灾 网络协议 数据库
云卓越架构:云上网络稳定性建设和应用稳定性治理最佳实践
本文介绍了云上网络稳定性体系建设的关键内容,包括面向失败的架构设计、可观测性与应急恢复、客户案例及阿里巴巴的核心电商架构演进。首先强调了网络稳定性的挑战及其应对策略,如责任共担模型和冗余设计。接着详细探讨了多可用区部署、弹性架构规划及跨地域容灾设计的最佳实践,特别是阿里云的产品和技术如何助力实现高可用性和快速故障恢复。最后通过具体案例展示了秒级故障转移的效果,以及同城多活架构下的实际应用。这些措施共同确保了业务在面对网络故障时的持续稳定运行。
|
2月前
|
Cloud Native 安全 持续交付
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
49 4
|
2月前
|
监控 持续交付 API
深入理解微服务架构及其在现代应用开发中的应用
深入理解微服务架构及其在现代应用开发中的应用
30 4
|
2月前
|
运维 Kubernetes Docker
深入理解容器化技术及其在微服务架构中的应用
深入理解容器化技术及其在微服务架构中的应用
65 1
|
2月前
|
监控 持续交付 API
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
55 3
|
2月前
|
边缘计算 监控 自动驾驶
揭秘云计算中的边缘计算:架构、优势及应用场景
揭秘云计算中的边缘计算:架构、优势及应用场景
|
2月前
|
存储 监控 API
深入解析微服务架构及其在现代应用中的实践
深入解析微服务架构及其在现代应用中的实践
45 0
|
2月前
|
监控 物联网 持续交付
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
35 0
|
2月前
|
监控 持续交付 API
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
36 0

热门文章

最新文章