spark-2.2.0-bin-hadoop2.6和spark-1.6.1-bin-hadoop2.6发行包自带案例全面详解(java、python、r和scala)之Basic包下的JavaTC.java(图文详解)

简介:

spark-1.6.1-bin-hadoop2.6里Basic包下的JavaTC.java

 

 

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package org.apache.spark.examples;
package zhouls.bigdata.Basic;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;

import scala.Tuple2;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;

/**
 * Transitive closure on a graph, implemented in Java.
 * Usage: JavaTC [slices]
 */
public final class JavaTC {

  private static final int numEdges = 200;
  private static final int numVertices = 100;
  private static final Random rand = new Random(42);

  static List<Tuple2<Integer, Integer>> generateGraph() {
    Set<Tuple2<Integer, Integer>> edges = new HashSet<Tuple2<Integer, Integer>>(numEdges);
    while (edges.size() < numEdges) {
      int from = rand.nextInt(numVertices);
      int to = rand.nextInt(numVertices);
      Tuple2<Integer, Integer> e = new Tuple2<Integer, Integer>(from, to);
      if (from != to) {
        edges.add(e);
      }
    }
    return new ArrayList<Tuple2<Integer, Integer>>(edges);
  }

  static class ProjectFn implements PairFunction<Tuple2<Integer, Tuple2<Integer, Integer>>,
      Integer, Integer> {
    static final ProjectFn INSTANCE = new ProjectFn();

    @Override
    public Tuple2<Integer, Integer> call(Tuple2<Integer, Tuple2<Integer, Integer>> triple) {
      return new Tuple2<Integer, Integer>(triple._2()._2(), triple._2()._1());
    }
  }

  public static void main(String[] args) {
    SparkConf sparkConf = new SparkConf().setAppName("JavaHdfsLR").setMaster("local"); 
    JavaSparkContext sc = new JavaSparkContext(sparkConf);
    Integer slices = (args.length > 0) ? Integer.parseInt(args[0]): 2;
    JavaPairRDD<Integer, Integer> tc = sc.parallelizePairs(generateGraph(), slices).cache();

    // Linear transitive closure: each round grows paths by one edge,
    // by joining the graph's edges with the already-discovered paths.
    // e.g. join the path (y, z) from the TC with the edge (x, y) from
    // the graph to obtain the path (x, z).

    // Because join() joins on keys, the edges are stored in reversed order.
    JavaPairRDD<Integer, Integer> edges = tc.mapToPair(
      new PairFunction<Tuple2<Integer, Integer>, Integer, Integer>() {
        @Override
        public Tuple2<Integer, Integer> call(Tuple2<Integer, Integer> e) {
          return new Tuple2<Integer, Integer>(e._2(), e._1());
        }
    });

    long oldCount;
    long nextCount = tc.count();
    do {
      oldCount = nextCount;
      // Perform the join, obtaining an RDD of (y, (z, x)) pairs,
      // then project the result to obtain the new (x, z) paths.
      tc = tc.union(tc.join(edges).mapToPair(ProjectFn.INSTANCE)).distinct().cache();
      nextCount = tc.count();
    } while (nextCount != oldCount);

    System.out.println("TC has " + tc.count() + " edges.");
    sc.stop();
  }
}
复制代码

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spark-2.2.0-bin-hadoop2.6里Basic包下的JavaTC.java

 

 

 

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package org.apache.spark.examples;
package zhouls.bigdata.Basic;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;

import scala.Tuple2;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.SparkSession;

/**
 * Transitive closure on a graph, implemented in Java.
 * Usage: JavaTC [partitions]
 */
public final class JavaTC {

  private static final int numEdges = 200;
  private static final int numVertices = 100;
  private static final Random rand = new Random(42);

  static List<Tuple2<Integer, Integer>> generateGraph() {
    Set<Tuple2<Integer, Integer>> edges = new HashSet<>(numEdges);
    while (edges.size() < numEdges) {
      int from = rand.nextInt(numVertices);
      int to = rand.nextInt(numVertices);
      Tuple2<Integer, Integer> e = new Tuple2<>(from, to);
      if (from != to) {
        edges.add(e);
      }
    }
    return new ArrayList<>(edges);
  }

  static class ProjectFn implements PairFunction<Tuple2<Integer, Tuple2<Integer, Integer>>,
      Integer, Integer> {
    static final ProjectFn INSTANCE = new ProjectFn();

    @Override
    public Tuple2<Integer, Integer> call(Tuple2<Integer, Tuple2<Integer, Integer>> triple) {
      return new Tuple2<>(triple._2()._2(), triple._2()._1());
    }
  }

  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .master("local")  
      .appName("JavaTC")
      .getOrCreate();

    JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());

    Integer slices = (args.length > 0) ? Integer.parseInt(args[0]): 2;
    JavaPairRDD<Integer, Integer> tc = jsc.parallelizePairs(generateGraph(), slices).cache();

    // Linear transitive closure: each round grows paths by one edge,
    // by joining the graph's edges with the already-discovered paths.
    // e.g. join the path (y, z) from the TC with the edge (x, y) from
    // the graph to obtain the path (x, z).

    // Because join() joins on keys, the edges are stored in reversed order.
    JavaPairRDD<Integer, Integer> edges = tc.mapToPair(e -> new Tuple2<>(e._2(), e._1()));

    long oldCount;
    long nextCount = tc.count();
    do {
      oldCount = nextCount;
      // Perform the join, obtaining an RDD of (y, (z, x)) pairs,
      // then project the result to obtain the new (x, z) paths.
      tc = tc.union(tc.join(edges).mapToPair(ProjectFn.INSTANCE)).distinct().cache();
      nextCount = tc.count();
    } while (nextCount != oldCount);

    System.out.println("TC has " + tc.count() + " edges.");
    spark.stop();
  }
}


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/7457771.html,如需转载请自行联系原作者
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
131 6
|
29天前
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
62 2
|
8天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
41 2
|
9天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
39 1
|
1月前
|
SQL 分布式计算 Java
Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
31 3
|
1月前
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
40 2
|
1月前
|
分布式计算 Java Hadoop
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
61 1
|
29天前
|
安全 Java Python
基于python-django的Java网站全站漏洞检测系统
基于python-django的Java网站全站漏洞检测系统
32 0
|
6月前
|
Java
java面向对象——包+继承+多态(一)-2
java面向对象——包+继承+多态(一)
42 3