[LeetCode] Trapping Rain Water 收集雨水

简介:

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example, 
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

这道收集雨水的题跟之前的那道 Largest Rectangle in Histogram 直方图中最大的矩形 有些类似,但是又不太一样,我们先来看一种方法,这种方法是基于动态规划Dynamic Programming的,我们维护一个一维的dp数组,这个DP算法需要遍历两遍数组,第一遍遍历dp[i]中存入i位置左边的最大值,然后开始第二遍遍历数组,第二次遍历时找右边最大值,然后和左边最大值比较取其中的较小值,然后跟当前值A[i]相比,如果大于当前值,则将差值存入结果,代码如下:

C++ 解法一:

class Solution {
public:
    int trap(vector<int>& height) {
        int res = 0, mx = 0, n = height.size();
        vector<int> dp(n, 0);
        for (int i = 0; i < n; ++i) {
            dp[i] = mx;
            mx = max(mx, height[i]);
        }
        mx = 0;
        for (int i = n - 1; i >= 0; --i) {
            dp[i] = min(dp[i], mx);
            mx = max(mx, height[i]);
            if (dp[i] > height[i]) res += dp[i] - height[i];
        }
        return res;
    }
};

Java 解法一:

public class Solution {
    public int trap(int[] height) {
        int res = 0, mx = 0, n = height.length;
        int[] dp = new int[n];
        for (int i = 0; i < n; ++i) {
            dp[i] = mx;
            mx = Math.max(mx, height[i]);
        }
        mx = 0;
        for (int i = n - 1; i >= 0; --i) {
            dp[i] = Math.min(dp[i], mx);
            mx = Math.max(mx, height[i]);
            if (dp[i] - height[i] > 0) res += dp[i] - height[i];
        }
        return res;
    }
}

最后我们来看一种只需要遍历一次即可的解法,这个算法需要left和right两个指针分别指向数组的首尾位置,从两边向中间扫描,在当前两指针确定的范围内,先比较两头找出较小值,如果较小值是left指向的值,则从左向右扫描,如果较小值是right指向的值,则从右向左扫描,若遇到的值比当较小值小,则将差值存入结果,如遇到的值大,则重新确定新的窗口范围,以此类推直至left和right指针重合,具体参见代码如下:

C++ 解法二:

class Solution {
public:
    int trap(vector<int>& height) {
        int res = 0, l = 0, r = height.size() - 1;
        while (l < r) {
            int mn = min(height[l], height[r]);
            if (mn == height[l]) {
                ++l;
                while (l < r && height[l] < mn) {
                    res += mn - height[l++];
                }
            } else {
                --r;
                while (l < r && height[r] < mn) {
                    res += mn - height[r--];
                }
            }
        }
        return res;
    }
};

Java 解法二:

public class Solution {
    public int trap(int[] height) {
        int res = 0, l = 0, r = height.length - 1;
        while (l < r) {
            int mn = Math.min(height[l], height[r]);
            if (height[l] == mn) {
                ++l;
                while (l < r && height[l] < mn) {
                    res += mn - height[l++];
                }
            } else {
                --r;
                while (l < r && height[r] < mn) {
                    res += mn - height[r--];
                }
            }
        }
        return res;
    }
}

我们可以对上面的解法进行进一步优化,使其更加简介:

C++ 解法三:

class Solution {
public:
    int trap(vector<int>& height) {
        int l = 0, r = height.size() - 1, level = 0, res = 0;
        while (l < r) {
            int lower = height[(height[l] < height[r]) ? l++ : r--];
            level = max(level, lower);
            res += level - lower;
        }
        return res;
    }
};

Java 解法三:

public class Solution {
    public int trap(int[] height) {
        int l = 0, r = height.length - 1, level = 0, res = 0;
        while (l < r) {
            int lower = height[(height[l] < height[r]) ? l++ : r--];
            level = Math.max(level, lower);
            res += level - lower;
        }
        return res;
    }
}

下面这种解法是用stack来做的,博主一开始都没有注意到这道题的tag还有stack,所以以后在总结的时候还是要多多留意一下标签啊。其实用stack的方法博主感觉更容易理解,我们的做法是,遍历高度,如果此时栈为空,或者当前高度小于等于栈顶高度,则把当前高度的坐标压入栈,注意我们不直接把高度压入栈,而是把坐标压入栈,这样方便我们在后来算水平距离。当我们遇到比栈顶高度大的时候,就说明有可能会有坑存在,可以装雨水。此时我们栈里至少有一个高度,如果只有一个的话,那么不能形成坑,我们直接跳过,如果多余一个的话,那么此时把栈顶元素取出来当作坑,新的栈顶元素就是左边界,当前高度是右边界,只要取二者较小的,减去坑的高度,长度就是右边界坐标减去左边界坐标再减1,二者相乘就是盛水量啦,参见代码如下:

C++ 解法四:

class Solution {
public:
    int trap(vector<int>& height) {
        stack<int> st;
        int i = 0, res = 0, n = height.size();
        while (i < n) {
            if (st.empty() || height[i] <= height[st.top()]) {
                st.push(i++);
            } else {
                int t = st.top(); st.pop();
                if (st.empty()) continue;
                res += (min(height[i], height[st.top()]) - height[t]) * (i - st.top() - 1);
            }
        }
        return res;
    }
};

Java 解法四:

class Solution {
    public int trap(int[] height) {
        Stack<Integer> s = new Stack<Integer>();
        int i = 0, n = height.length, res = 0;
        while (i < n) {
            if (s.isEmpty() || height[i] <= height[s.peek()]) {
                s.push(i++);
            } else {
                int t = s.pop();
                if (s.isEmpty()) continue;
                res += (Math.min(height[i], height[s.peek()]) - height[t]) * (i - s.peek() - 1);
            }
        }
        return res;
    }
}

本文转自博客园Grandyang的博客,原文链接:收集雨水[LeetCode] Trapping Rain Water ,如需转载请自行联系原博主。

相关文章
|
人工智能 容器
Leetcode 11. Container With Most Water
题目可以这么理解,在i位置有条高为ai的竖线,让你选出两台竖线构成一个容器,使得该容器装的水最多,注意容器不能倾斜。
56 3
Leetcode 365. Water and Jug Problem
一句话理解题意:有容积为x和y升的俩水壶,能不能量出z升的水。 我刚开始看到这题,立马就想了下暴力搜索的可能性,但考虑了下数据大小,立马放弃这个暴力的想法,于是意识到肯定有比较简单的数学方法,其实我自己没想到,后来看还是看了别人的代码,很多博客都直接给出了解法, 但没介绍为什么能这么解。所以我决定解释下我自己的思路。
58 0
LeetCode 417. Pacific Atlantic Water Flow
给定一个 m x n 的非负整数矩阵来表示一片大陆上各个单元格的高度。“太平洋”处于大陆的左边界和上边界,而“大西洋”处于大陆的右边界和下边界。 规定水流只能按照上、下、左、右四个方向流动,且只能从高到低或者在同等高度上流动。 请找出那些水流既可以流动到“太平洋”,又能流动到“大西洋”的陆地单元的坐标。
117 0
LeetCode 417. Pacific Atlantic Water Flow
LeetCode 407. Trapping Rain Water II
我们把最外面的四边当成四面墙,想象海水面不断的升高,首先会浸过墙面最低的格子,如果墙面最低格子的四周(出了在墙面的格子)有比它矮的格子,那么这就可以形成一个蓄水池,蓄水池的最高高度就是墙面最低的格子,于是我们计算这个蓄水池可以获得的蓄水量;然后这个蓄水池被添加到墙面中;继续在墙面中找最低的格子;
108 0
LeetCode 407. Trapping Rain Water II
|
索引
LeetCode 42 Trapping Rain Water
给定n个非负整数,每个非负整数表示一个宽度为1的柱子,计算下雨后能够捕获多少水.
76 0
LeetCode 42 Trapping Rain Water
|
机器学习/深度学习 PHP 索引
[Leetcode 之 PHP 解析 (42. Trapping Rain Water)
[Leetcode 之 PHP 解析 (42. Trapping Rain Water)
112 0
[Leetcode 之 PHP 解析 (42. Trapping Rain Water)
|
4月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
65 6
|
5月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
133 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
57 1