Given n
balloons, indexed from 0
to n-1
. Each balloon is painted with a number on it represented by array nums
. You are asked to burst all the balloons. If the you burst balloon i
you will get nums[left] * nums[i] * nums[right]
coins. Here left
and right
are adjacent indices of i
. After the burst, the left
and right
then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
(1) You may imagine nums[-1] = nums[n] = 1
. They are not real therefore you can not burst them.
(2) 0 ≤ n
≤ 500, 0 ≤ nums[i]
≤ 100
Example:
Given [3, 1, 5, 8]
Return 167
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Credits:
Special thanks to @peisi for adding this problem and creating all test cases.
这道题提出了一种打气球的游戏,每个气球都对应着一个数字,我们每次打爆一个气球,得到的金币数是被打爆的气球的数字和其两边的气球上的数字相乘,如果旁边没有气球了,则按1算,以此类推,求能得到的最多金币数。像这种求极值问题,我们一般都要考虑用动态规划Dynamic Programming来做,我们维护一个二维动态数组dp,其中dp[i][j]表示打爆区间[i,j]中的所有气球能得到的最多金币。题目中说明了边界情况,当气球周围没有气球的时候,旁边的数字按1算,这样我们可以在原数组两边各填充一个1,这样方便于计算。这道题的最难点就是找递归式,如下所示:
dp[i][j] = max(dp[i][j], nums[i - 1]*nums[k]*nums[j + 1] + dp[i][k - 1] + dp[k + 1][j]) ( i ≤ k ≤ j )
有了递推式,我们可以写代码,我们其实只是更新了dp数组的右上三角区域,我们最终要返回的值存在dp[1][n]中,其中n是两端添加1之前数组nums的个数。参见代码如下:
解法一:
// Non-recursion class Solution { public: int maxCoins(vector<int>& nums) { int n = nums.size(); nums.insert(nums.begin(), 1); nums.push_back(1); vector<vector<int> > dp(nums.size(), vector<int>(nums.size() , 0)); for (int len = 1; len <= n; ++len) { for (int left = 1; left <= n - len + 1; ++left) { int right = left + len - 1; for (int k = left; k <= right; ++k) { dp[left][right] = max(dp[left][right], nums[left - 1] * nums[k] * nums[right + 1] + dp[left][k - 1] + dp[k + 1][right]); } } } return dp[1][n]; } };
对于题目中的例子[3, 1, 5, 8]
,得到的dp数组如下:
0 0 0 0 0 0 0 3 30 159 167 0 0 0 15 135 159 0 0 0 0 40 48 0 0 0 0 0 40 0 0 0 0 0 0 0
这题还有递归解法,思路都一样,就是写法略有不同,参见代码如下:
解法二:
// Recursion class Solution { public: int maxCoins(vector<int>& nums) { int n = nums.size(); nums.insert(nums.begin(), 1); nums.push_back(1); vector<vector<int> > dp(nums.size(), vector<int>(nums.size() , 0)); return burst(nums, dp, 1 , n); } int burst(vector<int> &nums, vector<vector<int> > &dp, int left, int right) { if (left > right) return 0; if (dp[left][right] > 0) return dp[left][right]; int res = 0; for (int k = left; k <= right; ++k) { res = max(res, nums[left - 1] * nums[k] * nums[right + 1] + burst(nums, dp, left, k - 1) + burst(nums, dp, k + 1, right)); } dp[left][right] = res; return res; } };
本文转自博客园Grandyang的博客,原文链接:打气球游戏[LeetCode] Burst Balloons,如需转载请自行联系原博主。