LeetCode题目55:跳跃游戏【python5种算法贪心/回溯/动态规划/优化贪心/索引哈希映射 详解】

简介: LeetCode题目55:跳跃游戏【python5种算法贪心/回溯/动态规划/优化贪心/索引哈希映射 详解】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个非负整数数组 nums,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个位置。

输入格式
  • nums:一个由非负整数构成的数组。
输出格式
  • 返回一个布尔值,表示是否能到达最后一个位置。

示例

示例 1
输入: nums = [2,3,1,1,4]
输出: true
解释: 可以先跳 1 步,从位置 0 到 1,然后从位置 1 跳 3 步到最后一个位置。
示例 2
输入: nums = [3,2,1,0,4]
输出: false
解释: 无论如何,你总会到达位置 3,但该位置的最大跳跃长度是 0,所以你永远不可能到达最后一个位置。

方法一:贪心算法

解题步骤
  1. 初始化最远距离max_reach 初始化为 0,用于记录能到达的最远位置。
  2. 遍历数组:遍历数组中的每个位置,并更新 max_reach
  3. 判断可达性:如果在某个位置 imax_reach < i,说明无法继续向前跳跃,返回 false;如果 max_reach 大于等于数组的最后一个位置,则返回 true
完整的规范代码
def canJump(nums):
    """
    使用贪心算法判断能否跳到最后一个位置
    :param nums: List[int], 输入的数组
    :return: bool, 是否能到达最后一个位置
    """
    max_reach, n = 0, len(nums)
    for i in range(n):
        if i > max_reach:
            return False
        max_reach = max(max_reach, i + nums[i])
        if max_reach >= n - 1:
            return True
    return False
# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(n)),其中 n 是数组 nums 的长度。
  • 空间复杂度:(O(1)),使用了常数额外空间。

方法二:回溯算法

解题步骤
  1. 定义回溯函数:尝试从当前位置开始,模拟所有可能的跳跃步数,向前递归探索。
  2. 递归跳跃:从当前位置起跳,逐步减小跳跃距离直到 0,递归调用自身。
  3. 终止条件:如果到达数组末尾,返回 true;如果所有跳跃尝试都失败,返回 false
完整的规范代码
def canJumpFromPosition(position, nums):
    if position == len(nums) - 1:
        return True
    furthest_jump = min(position + nums[position], len(nums) - 1)
    for next_position in range(position + 1, furthest_jump + 1):
        if canJumpFromPosition(next_position, nums):
            return True
    return False
def canJump(nums):
    """
    使用回溯算法判断能否跳到最后一个位置
    :param nums: List[int], 输入的数组
    :return: bool, 是否能到达最后一个位置
    """
    return canJumpFromPosition(0, nums)
# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(2^n)),其中 n 是数组 nums 的长度,每个位置都可能产生递归调用。
  • 空间复杂度:(O(n)),递归的深度最多为 n

方法三:动态规划(自底向上)

解题步骤
  1. 初始化状态数组dp[i] 表示从位置 i 开始是否能到达数组的末尾。
  2. 状态转移:从后向前填充 dp 数组,根据 dp[j] (对于所有 i < j <= i+nums[i]) 更新 dp[i]
  3. 结果返回:返回 dp[0]
完整的规范代码
def canJump(nums):
    """
    使用动态规划算法判断能否跳到最后一个位置
    :param nums: List[int], 输入的数组
    :return: bool, 是否能到达最后一个位置
    """
    n = len(nums)
    dp = [False] * n
    dp[n - 1] = True
    
    for i in range(n - 2, -1, -1):
        furthest_jump = min(i + nums[i], n - 1)
        for j in range(i + 1, furthest_jump + 1):
            if dp[j]:
                dp[i] = True
                break
    return dp[0]
# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(n^2)),其中 n 是数组 nums 的长度,对于每个元素,可能需要遍历 nums[i] 次。
  • 空间复杂度:(O(n)),存储状态数组 dp 需要 n 个额外空间。

方法四:优化的贪心算法

解题步骤
  1. 从后向前遍历:从数组的倒数第二个元素开始,向前遍历数组。
  2. 更新目标位置:如果当前位置加上可跳跃的最大长度大于或等于目标位置,则更新目标位置为当前位置。
  3. 结果判断:遍历结束后,如果目标位置更新为数组的起始位置,则返回 true,否则返回 false
完整的规范代码
def canJump(nums):
    """
    使用优化的贪心算法判断能否跳到最后一个位置
    :param nums: List[int], 输入的数组
    :return: bool, 是否能到达最后一个位置
    """
    n = len(nums)
    lastPos = n - 1  # 最初目标位置为数组的最后一个位置
    for i in range(n - 2, -1, -1):  # 从倒数第二个位置向前遍历
        if i + nums[i] >= lastPos:  # 如果当前位置能跳到或跳过目标位置
            lastPos = i  # 更新目标位置为当前位置
    return lastPos == 0  # 最终目标位置是否为起始位置
# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(n)),其中 n 是数组 nums 的长度,只需遍历一次数组。
  • 空间复杂度:(O(1)),使用了常数的额外空间。

方法五:索引哈希映射

解题步骤
  1. 建立索引哈希映射:创建一个字典来记录每个元素能达到的最远距离。
  2. 判断可达性:从第一个元素开始,逐个检查每个元素是否可达,同时更新可达的最远距离。
  3. 递归结束条件:如果在某个点发现最远距离无法继续向前或已覆盖数组末尾,则停止。
完整的规范代码
def canJump(nums):
    """
    使用索引哈希映射法判断能否跳到最后一个位置
    :param nums: List[int], 输入的数组
    :return: bool, 是否能到达最后一个位置
    """
    max_reach = 0  # 初始化最远可达位置
    for i in range(len(nums)):
        if i > max_reach:
            return False  # 当前索引不可达
        max_reach = max(max_reach, i + nums[i])  # 更新最远可达位置
        if max_reach >= len(nums) - 1:
            return True  # 已可达数组末尾
    return False
# 示例调用
print(canJump([2,3,1,1,4]))  # 输出: True
print(canJump([3,2,1,0,4]))  # 输出: False
算法分析
  • 时间复杂度:(O(n)),其中 n 是数组 nums 的长度,只需遍历一次数组。
  • 空间复杂度:(O(1)),使用了常数的额外空间。

不同算法的优劣势对比

特征 方法一: 贪心算法 方法二: 回溯算法 方法三: 动态规划 方法四: 优化贪心 方法五: 索引哈希映射
时间复杂度 (O(n)) (O(2^n)) (O(n^2)) (O(n)) (O(n))
空间复杂度 (O(1)) (O(n)) (O(n)) (O(1)) (O(1))
优势 快速简单 理论上完备 结构清晰 更直观高效 直观简洁
劣势 基本无 极度低效 空间复杂 需逆向思维 与方法一类似

应用示例详解

跳跃游戏的算法在多个领域内都有广泛的应用,特别是在游戏开发、动画制作、机器学习等领域。以下是两个具体的应用场景,展示如何将跳跃游戏算法转化为实际可用的技术解决方案。

应用一:游戏开发中的关卡可玩性验证

在平台跳跃游戏的开发过程中,设计师常常需要创建出既具有挑战性又能确保玩家能够完成的关卡。使用跳跃游戏算法可以帮助开发者验证任何给定关卡的可玩性。

场景描述

  • 设计师创建了一个关卡,其中包含不同高度和间隔的平台,玩家从起点开始,需要通过跳跃到达终点。
  • 每个平台的数字表示玩家从该点最多可以向前跳跃的距离(即 nums 数组)。

技术实现

  • 开发者使用贪心算法,从起点开始,实时计算玩家可以到达的最远距离。
  • 如果在任一点,计算得到的最远距离小于该点的索引,意味着玩家无法从当前平台跳到下一个平台,关卡不可通行。

代码示例

def verify_level(nums):
    max_reach = 0
    for i, jump in enumerate(nums):
        if i > max_reach:
            return False, i  # 返回不可通行的最远点
        max_reach = max(max_reach, i + jump)
        if max_reach >= len(nums) - 1:
            return True, None  # 关卡可通行
    return False, len(nums) - 1
# 关卡设计示例:玩家可以从每个位置跳跃的最大长度
level_design = [2, 3, 1, 0, 4, 2, 1]
is_playable, fail_point = verify_level(level_design)
print(f"Level Playable: {is_playable}, Failure Point: {fail_point}")

输出解析

  • 如果关卡可通行,函数返回 TrueNone
  • 如果关卡不可通行,函数指出玩家被卡住的具体位置。
应用二:动画制作中的运动路径规划

动画制作中,制定角色或物体的移动路径是一个核心任务,跳跃游戏算法可以用来确保动画中的运动路径是连贯和逻辑上可行的。

场景描述

  • 动画师需要创建一个场景,其中一个角色需要从场景的一端跳跃到另一端。
  • 每个可能的着陆点的数字表示从该点角色能够跳跃的最大长度。

技术实现

  • 使用贪心算法来确定角色的每一步是否都能顺利落到一个合法的着陆点。
  • 这样的算法保证了动画的连贯性和视觉上的合理性。

代码示例

def plan_animation_path(spots):
    reach = 0
    for i in range(len(spots)):
        if i > reach:
            return False  # 角色无法继续前进
        reach = max(reach, i + spots[i])
    return True  # 角色可以顺利完成动画
# 动画路径设计示例:角色可以从每个位置跳跃的最大长度
animation_path = [1, 2, 0, 3, 2, 0, 1]
can_complete = plan_animation_path(animation_path)
print(f"Animation Path Complete: {can_complete}")

输出解析

  • 返回 True 表示角色可以顺利从起点跳到终点。
  • 返回 False 表示存在至少一个点使得角色无法从该点继续前进。

总结

通过上述应用示例,我们可以看到跳跃游戏算法不仅仅局限于理论问题,它可以广泛应用于实际项目中,如游戏开发和动画制作,帮助开发者和设计师验证和规划合理的路径和策略。这种算法的实际应用强调了线性代数在现代编程中的实用价值和广泛适用性。


欢迎关注微信公众号 数据分析螺丝钉

相关文章
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
6天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
17天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
16天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
20天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
7天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
6天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
23 3
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。