RMQ问题(线段树算法,ST算法优化)

简介: RMQ (Range Minimum/Maximum Query)问题是指: 对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j

RMQ (Range Minimum/Maximum Query)问题是指:

对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在[i,j]里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题



主要方法及复杂度(处理复杂度和查询复杂度)如下:

1.朴素(即搜索) O(n)-O(n)

2.线段树(segment tree) O(n)-O(qlogn)

3.ST(实质是动态规划) O(nlogn)-O(1)



线段树方法:

线段树能在对数时间内在数组区间上进行更新与查询。

定义线段树在区间[i, j] 上如下:

第一个节点维护着区间 [i, j] 的信息。

if i<j , 那么左孩子维护着区间[i, (i+j)/2] 的信息,右孩子维护着区间[(i+j)/2+1, j] 的信息。

可知 N  个元素的线段树的高度 为 [logN] + 1(只有根节点的树高度为0) .

下面是区间 [0, 9]  的一个线段树:







线段树和堆有一样的结构, 因此如果一个节点编号为 x ,那么左孩子编号为2*x  右孩子编号为2*x+1.



使用线段树解决RMQ问题,关键维护一个数组M[num],num=2^(线段树高度+1).

M[i]:维护着被分配给该节点(编号:i 线段树根节点编号:1)的区间的最小值元素的下标。 该数组初始状态为-1.

 1 #include<iostream>
 2 
 3 using namespace std;
 4 
 5 #define MAXN 100
 6 #define MAXIND 256 //线段树节点个数
 7 
 8 //构建线段树,目的:得到M数组.
 9 void initialize(int node, int b, int e, int M[], int A[])
10 {
11     if (b == e)
12         M[node] = b; //只有一个元素,只有一个下标
13     else
14     {
15     //递归实现左孩子和右孩子
16         initialize(2 * node, b, (b + e) / 2, M, A);
17         initialize(2 * node + 1, (b + e) / 2 + 1, e, M, A);
18     //search for the minimum value in the first and
19     //second half of the interval
20     if (A[M[2 * node]] <= A[M[2 * node + 1]])
21         M[node] = M[2 * node];
22     else
23         M[node] = M[2 * node + 1];
24     }
25 }
26 
27 //找出区间 [i, j] 上的最小值的索引
28 int query(int node, int b, int e, int M[], int A[], int i, int j)
29 {
30     int p1, p2;
31 
32 
33     //查询区间和要求的区间没有交集
34     if (i > e || j < b)
35         return -1;
36 
37     //if the current interval is included in
38     //the query interval return M[node]
39     if (b >= i && e <= j)
40         return M[node];
41 
42     //compute the minimum position in the
43     //left and right part of the interval
44     p1 = query(2 * node, b, (b + e) / 2, M, A, i, j);
45     p2 = query(2 * node + 1, (b + e) / 2 + 1, e, M, A, i, j);
46 
47     //return the position where the overall
48     //minimum is
49     if (p1 == -1)
50         return M[node] = p2;
51     if (p2 == -1)
52         return M[node] = p1;
53     if (A[p1] <= A[p2])
54         return M[node] = p1;
55     return M[node] = p2;
56 
57 }
58 
59 
60 int main()
61 {
62     int M[MAXIND]; //下标1起才有意义,保存下标编号节点对应区间最小值的下标.
63     memset(M,-1,sizeof(M));
64     int a[]={3,1,5,7,2,9,0,3,4,5};
65     initialize(1, 0, sizeof(a)/sizeof(a[0])-1, M, a);
66     cout<<query(1, 0, sizeof(a)/sizeof(a[0])-1, M, a, 0, 5)<<endl;
67     return 0;
68 }

ST算法(Sparse Table):它是一种动态规划的方法。

以最小值为例。a为所寻找的数组.

用一个二维数组f(i,j)记录区间[i,i+2^j-1](持续2^j个)区间中的最小值。其中f[i,0] = a[i];

所以,对于任意的一组(i,j),f(i,j) = min{f(i,j-1),f(i+2^(j-1),j-1)}来使用动态规划计算出来。

这个算法的高明之处不是在于这个动态规划的建立,而是它的查询:它的查询效率是O(1).

假设我们要求区间[m,n]中a的最小值,找到一个数k使得2^k<n-m+1.

这样,可以把这个区间分成两个部分:[m,m+2^k-1]和[n-2^k+1,n].我们发现,这两个区间是已经初始化好的.

前面的区间是f(m,k),后面的区间是f(n-2^k+1,k).

这样,只要看这两个区间的最小值,就可以知道整个区间的最小值!

 1 #include<iostream>
 2 #include<cmath>
 3 #include<algorithm>
 4 using namespace std;
 5 
 6 #define M 100010
 7 #define MAXN 500
 8 #define MAXM 500
 9 int dp[M][18];
10 /*
11 *一维RMQ ST算法
12 *构造RMQ数组 makermq(int n,int b[]) O(nlog(n))的算法复杂度
13 *dp[i][j] 表示从i到i+2^j -1中最小的一个值(从i开始持续2^j个数)
14 *dp[i][j]=min{dp[i][j-1],dp[i+2^(j-1)][j-1]}
15 *查询RMQ rmq(int s,int v)
16 *将s-v 分成两个2^k的区间
17 *即 k=(int)log2(s-v+1)
18 *查询结果应该为 min(dp[s][k],dp[v-2^k+1][k])
19 */
20 
21 void makermq(int n,int b[])
22 {
23     int i,j;
24     for(i=0;i<n;i++)
25         dp[i][0]=b[i];
26     for(j=1;(1<<j)<=n;j++)
27         for(i=0;i+(1<<j)-1<n;i++)
28             dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
29 }
30 int rmq(int s,int v)
31 {
32     int k=(int)(log((v-s+1)*1.0)/log(2.0));
33     return min(dp[s][k],dp[v-(1<<k)+1][k]);
34 }
35 
36 void makeRmqIndex(int n,int b[]) //返回最小值对应的下标
37 {
38     int i,j;
39     for(i=0;i<n;i++)
40         dp[i][0]=i;
41     for(j=1;(1<<j)<=n;j++)
42         for(i=0;i+(1<<j)-1<n;i++)
43             dp[i][j]=b[dp[i][j-1]] < b[dp[i+(1<<(j-1))][j-1]]? dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
44 }
45 int rmqIndex(int s,int v,int b[])
46 {
47     int k=(int)(log((v-s+1)*1.0)/log(2.0));
48     return b[dp[s][k]]<b[dp[v-(1<<k)+1][k]]? dp[s][k]:dp[v-(1<<k)+1][k];
49 }
50 
51 int main()
52 {
53     int a[]={3,4,5,7,8,9,0,3,4,5};
54     //返回下标
55     makeRmqIndex(sizeof(a)/sizeof(a[0]),a);
56     cout<<rmqIndex(0,9,a)<<endl;
57     cout<<rmqIndex(4,9,a)<<endl;
58     //返回最小值
59     makermq(sizeof(a)/sizeof(a[0]),a);
60     cout<<rmq(0,9)<<endl;
61     cout<<rmq(4,9)<<endl;
62     return 0;
63 }

 

目录
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
2天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
15 6
|
8天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
37 3
|
8天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
23 2
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
27天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
24天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
20天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
24天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。