OpenCV学习(5) Mat的基本操作(2)

简介: 本章我们学习一下Mat中的常用操作,因为在后面其它的教程中,我们经常要对图像进行各种处理,也要使用这些操作。 一、 Mat的复制,就是从一个矩阵A,生成相关的另一个矩阵B。 (1)使用赋值的方法,比如通过构造函数生成矩阵N,通过复制生成矩阵P cv::Mat N(M); ...

      本章我们学习一下Mat中的常用操作,因为在后面其它的教程中,我们经常要对图像进行各种处理,也要使用这些操作。

一、 Mat的复制,就是从一个矩阵A,生成相关的另一个矩阵B。

(1)使用赋值的方法,比如通过构造函数生成矩阵N,通过复制生成矩阵P

cv::Mat N(M);
cv::Mat P;
P=M;

     这样生成的矩阵,只是新生成一个矩阵头,它的data依然指向矩阵M的data,类似C++中的浅拷贝,比如矩阵M,N,P它们的data都指向地址0x00badd50

imageimageimage

(2) 使用copyTo和clone函数

cv::Mat F = M.clone();
cv::Mat G;
F.copyTo(G);

      这样可以生成一个全新的矩阵,不但复制矩阵的头信息,而且会生成一个data的拷贝。比如矩阵F和M,它们的data指针地址和F是不同的。

imageimage

      注意:copyTo函数,它还可以带有掩码矩阵copyTo(G, maskImage), maskImage是一个单通道的矩阵,值为0的位置,在拷贝时候并不会拷贝。

image

二、Mat中常用的几个函数

1. convertTo(OutputArray m, int rtype, double alpha=1, double beta=0 )

生成一个新矩阵,矩阵的中值为原矩阵中的值乘以alpha,然后再加上beta

484B0C~1

imageMask.convertTo(mark1,CV_8U);

2. Mat::reshape(int cn),改变矩阵的维数,比如把二维矩阵改变成一维矩阵。这个操作只是改变矩阵的头信息,比如在没有padding数据情况下,便于数据处理,有时候我们会把二维矩阵变成一维矩阵。

imageMask.reshape(1);

3. isContinous,检测矩阵是否有padding数据。

 

4. 用下面的代码,可以取出矩阵的某个ROI区域,以便进行处理。

cv::Rect rect(100, 100, 100, 100); 

srcImage(rect).copyTo(roiImage); 

5.下面的代码,实现一个矩阵的子矩阵赋值,矩阵roi的data指针会指向result1的data的50行,70列处。

cv::Mat result1= cv::Mat(image1.rows, image1.cols,CV_8UC1, cv::Scalar(cv::GC_BGD));
//注意给子矩阵赋值的方法
cv::Mat roi(result1, cv::Rect(50,70,result1.cols-150,result.rows-180));
roi = cv::Scalar(cv::GC_PR_FGD);

三、简单的三维矩阵示例

//创建一个3维矩阵,每维都是长度为2
int sz[3] = {3,3,3};
cv::Mat L(3,sz, CV_8UC(1), cv::Scalar::all(1));

//打印多维数组
for(i=0; i< 3; i++)
    {
    for(j=0; j<3; j++)
        {
          for(k=0; k<3; k++)
              {
               // printf("%d \n", L.data[i*3*3 + j*3 +k]);
              }
        }
    }

四、稀疏矩阵

      有时候,我们需要使用多维矩阵存储一些值,比如三维BGR图像的直方图,由于每维的索引数都是256,所以矩阵元素数量达到256*256*256,如果用普通矩阵存储,需要分配很大的空间,这时候,最好使用稀疏矩阵sparseMat,因为在稀疏矩阵中只保存非零的值。

下面是使用稀疏矩阵的简单例子:

//稀疏矩阵的操作
//创建一个三维的稀疏矩阵

const int dims = 3;
int size[] = {256, 256, 256};
SparseMat sparse_mat(dims, size, CV_32F);
//20个非0的值,注意:稀疏矩阵保存非零的值
for(int i = 0; i < 20; i++)
    {
    int idx[dims];
    for(int k = 0; k < dims; k++)
        idx[k] = rand()%256;
    sparse_mat.ref<float>(idx) = 2.f;
    }

//显示稀疏矩阵的结果
SparseMatConstIterator_<float> it1 = sparse_mat.begin<float>(),    it_end = sparse_mat.end<float>();
double s = 0;
int dims1 = sparse_mat.dims();
for(; it1 != it_end; ++it1)
    {
    // 打印索引和元素的值
    const SparseMat::Node* n = it1.node();
    printf("(");
    for(int i = 0; i < dims1; i++)
        printf("%d%s", n->idx[i], i < dims-1 ? ", " : ")");
    printf(": %g\n", it1.value<float>());
    s += *it1;
    }
printf("元素的个数 %g\n", s);

程序运行的结果:

image

源文件:工程FirstOpenCV2。

相关文章
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
137 2
|
6月前
|
存储 算法 API
OpenCV 3.1.0中的Mat对象使用
OpenCV 3.1.0中的Mat对象使用
42 2
|
5月前
|
计算机视觉 Python
opencv 处理图像去噪的几种方法学习
OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例: 均值滤波:使用像素邻域的灰度均值代替该像素的值。
70 0
|
6月前
|
存储 编解码 API
【图像文本化】Base64编解码OpenCV4中 Mat 对象
【图像文本化】Base64编解码OpenCV4中 Mat 对象
98 0
|
6月前
|
机器学习/深度学习 开发框架 TensorFlow
### 如何系统化学习OpenCV4
### 如何系统化学习OpenCV4
43 0
|
7月前
|
算法 计算机视觉 Python
【OpenCV】-算子(Sobel、Canny、Laplacian)学习
【OpenCV】-算子(Sobel、Canny、Laplacian)学习
214 2
|
7月前
|
存储 计算机视觉
OpenCV—学习基本绘图
OpenCV—学习基本绘图
|
7月前
|
算法 C++ 计算机视觉
Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法
Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法
321 0
|
2月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
477 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
3月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
52 4