【Python实战】——Python+Opencv是实现车牌自动识别

简介: 【Python实战】——Python+Opencv是实现车牌自动识别

该篇文章将以实战形式演示利用Python结合Opencv实现车牌识别,全程涉及图像预处理、车牌定位、车牌分割、通过模板匹配识别结果输出。该项目对于智能交通、车辆管理等领域具有实际应用价值。通过自动识别车牌号码,可以实现车辆追踪、违章查询、停车场管理等功能,提高交通管理的效率和准确性。可用于车牌识别技术学习。

技术要点:

  • OpenCV:用于图像处理和计算机视觉任务。
  • Python:作为编程语言,具有简单易学、资源丰富等优点。
  • 图像处理技术:如灰度化、噪声去除、边缘检测、形态学操作、透视变换等。

1 导入相关模块

import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
from PIL import ImageFont, ImageDraw, Image

2 相关功能函数定义

2.1 彩色图片显示函数(plt_show0)

def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()

cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r, g, b]

2.2 灰度图片显示函数(plt_show)

def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()

2.3 图像去噪函数(gray_guss)

def gray_guss(image):
    image = cv2.GaussianBlur(image, (3, 3), 0)
    gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    return gray_image

此处演示使用高斯模糊去噪。

cv2.GaussianBlur参数说明:

  • src:输入图像,可以是任意数量的通道,这些通道可以独立处理,但深度应为 CV_8UCV_16UCV_16SCV_32FCV_64F
  • ksize:高斯核的大小,必须是正奇数,例如 (3, 3)、(5, 5) 等。如果 ksize 的值为零,那么它会根据 sigmaXsigmaY 的值来计算。
  • sigmaX:X 方向上的高斯核标准偏差。
  • dst:输出图像,大小和类型与 src 相同。
  • sigmaY:Y 方向上的高斯核标准偏差,如果 sigmaY 是零,那么它会与 sigmaX 的值相同。如果 sigmaY 是负数,那么它会从 ksize.widthksize.height 计算得出。
  • borderType:像素外插法,有默认值。

2 图像预处理

2.1 图片读取

origin_image = cv2.imread('D:/image/car3.jpg')

  此处演示识别车牌原图:

2.2 高斯去噪

origin_image = cv2.imread('D:/image/car3.jpg')
# 复制一张图片,在复制图上进行图像操作,保留原图
image = origin_image.copy()
gray_image = gray_guss(image)

2.3 边缘检测

Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
image = absX

x方向上的边缘检测(增强边缘信息)

2.4 阈值化

# 图像阈值化操作——获得二值化图
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 显示灰度图像
plt_show(image)

  运行结果:

3 车牌定位

3.1 区域选择

kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 显示灰度图像
plt_show(image)

从图像中提取对表达和描绘区域形状有意义的图像分量。

  运行结果:

3.2 形态学操作

# 腐蚀(erode)和膨胀(dilate)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
#x方向进行闭操作(抑制暗细节)
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
#y方向的开操作
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值滤波(去噪)
image = cv2.medianBlur(image, 21)
# 显示灰度图像
plt_show(image)

使用膨胀和腐蚀操作来突出车牌区域。

   运行结果:

3.3 轮廓检测

contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for item in contours:
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
    if (weight > (height * 3)) and (weight < (height * 4.5)):
        image = origin_image[y:y + height, x:x + weight]
        plt_show(image)

4 车牌字符分割

4.1 高斯去噪

# 图像去噪灰度处理
gray_image = gray_guss(image)

4.2 阈值化

ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)

  运行结果:

4.3 膨胀操作

#膨胀操作
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
image = cv2.dilate(image, kernel)
plt_show(image)

  运行结果:

4.4 车牌号排序

words = sorted(words,key=lambda s:s[0],reverse=False)
i = 0
#word中存放轮廓的起始点和宽高
for word in words:
    # 筛选字符的轮廓
    if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
        i = i+1
        if word[2] < 15:
            splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
        else:
            splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
        word_images.append(splite_image)
        print(i)
print(words)

  运行结果:

1
2
3
4
5
6
7
[[2, 0, 7, 70], [12, 6, 30, 55], [15, 7, 7, 9], [46, 6, 32, 55], [83, 30, 9, 9], [96, 7, 32, 55], [132, 8, 32, 55], [167, 8, 30, 54], [202, 62, 7, 6], [203, 7, 30, 55], [245, 7, 12, 54], [266, 0, 12, 70]]

4.5 分割效果

for i,j in enumerate(word_images):  
    plt.subplot(1,7,i+1)
    plt.imshow(word_images[i],cmap='gray')
plt.show()

  运行结果:

5 模板匹配

5.1 准备模板

# 准备模板(template[0-9]为数字模板;)
template = ['0','1','2','3','4','5','6','7','8','9',
            'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
            '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
            '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']
# 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
def read_directory(directory_name):
    referImg_list = []
    for filename in os.listdir(directory_name):
        referImg_list.append(directory_name + "/" + filename)
    return referImg_list
# 获得中文模板列表(只匹配车牌的第一个字符)
def get_chinese_words_list():
    chinese_words_list = []
    for i in range(34,64):
        #将模板存放在字典中
        c_word = read_directory('D:/refer1/'+ template[i])
        chinese_words_list.append(c_word)
    return chinese_words_list
chinese_words_list = get_chinese_words_list()
# 获得英文模板列表(只匹配车牌的第二个字符)
def get_eng_words_list():
    eng_words_list = []
    for i in range(10,34):
        e_word = read_directory('D:/refer1/'+ template[i])
        eng_words_list.append(e_word)
    return eng_words_list
eng_words_list = get_eng_words_list()
# 获得英文和数字模板列表(匹配车牌后面的字符)
def get_eng_num_words_list():
    eng_num_words_list = []
    for i in range(0,34):
        word = read_directory('D:/refer1/'+ template[i])
        eng_num_words_list.append(word)
    return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()

此处需提前准备各类字符模板。

5.2 匹配结果

# 获得英文和数字模板列表(匹配车牌后面的字符)
def get_eng_num_words_list():
    eng_num_words_list = []
    for i in range(0,34):
        word = read_directory('D:/refer1/'+ template[i])
        eng_num_words_list.append(word)
    return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()
# 读取一个模板地址与图片进行匹配,返回得分
def template_score(template,image):
    #将模板进行格式转换
    template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
    template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
    #模板图像阈值化处理——获得黑白图
    ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
#     height, width = template_img.shape
#     image_ = image.copy()
#     image_ = cv2.resize(image_, (width, height))
    image_ = image.copy()
    #获得待检测图片的尺寸
    height, width = image_.shape
    # 将模板resize至与图像一样大小
    template_img = cv2.resize(template_img, (width, height))
    # 模板匹配,返回匹配得分
    result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
    return result[0][0]
# 对分割得到的字符逐一匹配
def template_matching(word_images):
    results = []
    for index,word_image in enumerate(word_images):
        if index==0:
            best_score = []
            for chinese_words in chinese_words_list:
                score = []
                for chinese_word in chinese_words:
                    result = template_score(chinese_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[34+i])
            r = template[34+i]
            results.append(r)
            continue
        if index==1:
            best_score = []
            for eng_word_list in eng_words_list:
                score = []
                for eng_word in eng_word_list:
                    result = template_score(eng_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[10+i])
            r = template[10+i]
            results.append(r)
            continue
        else:
            best_score = []
            for eng_num_word_list in eng_num_words_list:
                score = []
                for eng_num_word in eng_num_word_list:
                    result = template_score(eng_num_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[i])
            r = template[i]
            results.append(r)
            continue
    return results
word_images_ = word_images.copy()
# 调用函数获得结果
result = template_matching(word_images_)
print(result)
print( "".join(result))

  运行结果:

['渝', 'B', 'F', 'U', '8', '7', '1']
渝BFU871

“”.join(result)函数将列表转换为拼接好的字符串,方便结果显示

5.3 匹配效果展示

height,weight = origin_image.shape[0:2]
print(height)
print(weight)
image_1 = origin_image.copy()
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
#设置需要显示的字体
fontpath = "font/simsun.ttc"
font = ImageFont.truetype(fontpath,64)
img_pil = Image.fromarray(image_1)
draw = ImageDraw.Draw(img_pil)
#绘制文字信息
draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0))
bk_img = np.array(img_pil)
print(result)
print( "".join(result))
plt_show0(bk_img)

  运行结果:

6完整代码

# 导入所需模块
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
from PIL import ImageFont, ImageDraw, Image
# plt显示彩色图片
def plt_show0(img):
    b,g,r = cv2.split(img)
    img = cv2.merge([r, g, b])
    plt.imshow(img)
    plt.show()
    
# plt显示灰度图片
def plt_show(img):
    plt.imshow(img,cmap='gray')
    plt.show()
    
# 图像去噪灰度处理
def gray_guss(image):
    image = cv2.GaussianBlur(image, (3, 3), 0)
    gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    return gray_image
# 读取待检测图片
origin_image = cv2.imread('D:/image/car3.jpg')
# 复制一张图片,在复制图上进行图像操作,保留原图
image = origin_image.copy()
# 图像去噪灰度处理
gray_image = gray_guss(image)
# x方向上的边缘检测(增强边缘信息)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
image = absX
# 图像阈值化操作——获得二值化图
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 显示灰度图像
plt_show(image)
# 形态学(从图像中提取对表达和描绘区域形状有意义的图像分量)——闭操作
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 显示灰度图像
plt_show(image)
# 腐蚀(erode)和膨胀(dilate)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
#x方向进行闭操作(抑制暗细节)
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
#y方向的开操作
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值滤波(去噪)
image = cv2.medianBlur(image, 21)
# 显示灰度图像
plt_show(image)
# 获得轮廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for item in contours:
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    # 根据轮廓的形状特点,确定车牌的轮廓位置并截取图像
    if (weight > (height * 3)) and (weight < (height * 4.5)):
        image = origin_image[y:y + height, x:x + weight]
        plt_show(image)
#车牌字符分割
# 图像去噪灰度处理
gray_image = gray_guss(image)
# 图像阈值化操作——获得二值化图   
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
#膨胀操作
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
image = cv2.dilate(image, kernel)
plt_show(image)
# 查找轮廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
words = []
word_images = []
#对所有轮廓逐一操作
for item in contours:
    word = []
    rect = cv2.boundingRect(item)
    x = rect[0]
    y = rect[1]
    weight = rect[2]
    height = rect[3]
    word.append(x)
    word.append(y)
    word.append(weight)
    word.append(height)
    words.append(word)
# 排序,车牌号有顺序。words是一个嵌套列表
words = sorted(words,key=lambda s:s[0],reverse=False)
i = 0
#word中存放轮廓的起始点和宽高
for word in words:
    # 筛选字符的轮廓
    if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
        i = i+1
        if word[2] < 15:
            splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
        else:
            splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
        word_images.append(splite_image)
        print(i)
print(words)
for i,j in enumerate(word_images):  
    plt.subplot(1,7,i+1)
    plt.imshow(word_images[i],cmap='gray')
plt.show()
#模版匹配
# 准备模板(template[0-9]为数字模板;)
template = ['0','1','2','3','4','5','6','7','8','9',
            'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
            '藏','川','鄂','甘','赣','贵','桂','黑','沪','吉','冀','津','晋','京','辽','鲁','蒙','闽','宁',
            '青','琼','陕','苏','皖','湘','新','渝','豫','粤','云','浙']
# 读取一个文件夹下的所有图片,输入参数是文件名,返回模板文件地址列表
def read_directory(directory_name):
    referImg_list = []
    for filename in os.listdir(directory_name):
        referImg_list.append(directory_name + "/" + filename)
    return referImg_list
# 获得中文模板列表(只匹配车牌的第一个字符)
def get_chinese_words_list():
    chinese_words_list = []
    for i in range(34,64):
        #将模板存放在字典中
        c_word = read_directory('D:/refer1/'+ template[i])
        chinese_words_list.append(c_word)
    return chinese_words_list
chinese_words_list = get_chinese_words_list()
# 获得英文模板列表(只匹配车牌的第二个字符)
def get_eng_words_list():
    eng_words_list = []
    for i in range(10,34):
        e_word = read_directory('D:/refer1/'+ template[i])
        eng_words_list.append(e_word)
    return eng_words_list
eng_words_list = get_eng_words_list()
# 获得英文和数字模板列表(匹配车牌后面的字符)
def get_eng_num_words_list():
    eng_num_words_list = []
    for i in range(0,34):
        word = read_directory('D:/refer1/'+ template[i])
        eng_num_words_list.append(word)
    return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()
# 读取一个模板地址与图片进行匹配,返回得分
def template_score(template,image):
    #将模板进行格式转换
    template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
    template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
    #模板图像阈值化处理——获得黑白图
    ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
#     height, width = template_img.shape
#     image_ = image.copy()
#     image_ = cv2.resize(image_, (width, height))
    image_ = image.copy()
    #获得待检测图片的尺寸
    height, width = image_.shape
    # 将模板resize至与图像一样大小
    template_img = cv2.resize(template_img, (width, height))
    # 模板匹配,返回匹配得分
    result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
    return result[0][0]
# 对分割得到的字符逐一匹配
def template_matching(word_images):
    results = []
    for index,word_image in enumerate(word_images):
        if index==0:
            best_score = []
            for chinese_words in chinese_words_list:
                score = []
                for chinese_word in chinese_words:
                    result = template_score(chinese_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[34+i])
            r = template[34+i]
            results.append(r)
            continue
        if index==1:
            best_score = []
            for eng_word_list in eng_words_list:
                score = []
                for eng_word in eng_word_list:
                    result = template_score(eng_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[10+i])
            r = template[10+i]
            results.append(r)
            continue
        else:
            best_score = []
            for eng_num_word_list in eng_num_words_list:
                score = []
                for eng_num_word in eng_num_word_list:
                    result = template_score(eng_num_word,word_image)
                    score.append(result)
                best_score.append(max(score))
            i = best_score.index(max(best_score))
            # print(template[i])
            r = template[i]
            results.append(r)
            continue
    return results
word_images_ = word_images.copy()
# 调用函数获得结果
result = template_matching(word_images_)
print(result)
# "".join(result)函数将列表转换为拼接好的字符串,方便结果显示
print( "".join(result))
height,weight = origin_image.shape[0:2]
print(height)
print(weight)
image_1 = origin_image.copy()
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
#设置需要显示的字体
fontpath = "font/simsun.ttc"
font = ImageFont.truetype(fontpath,64)
img_pil = Image.fromarray(image_1)
draw = ImageDraw.Draw(img_pil)
#绘制文字信息
draw.text((int(0.2*weight)+25, int(0.75*height)),  "".join(result), font = font, fill = (255, 255, 0))
bk_img = np.array(img_pil)
print(result)
print( "".join(result))
plt_show0(bk_img)


相关文章
|
22天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
22天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
44 10
|
1月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
1月前
|
并行计算 调度 开发者
探索Python中的异步编程:从基础到实战
在Python的世界里,异步编程是一种让程序运行更加高效、响应更快的技术。本文不仅会介绍异步编程的基本概念和原理,还将通过具体代码示例展示如何在Python中实现异步操作。无论你是初学者还是有经验的开发者,都能从中获益,了解如何运用这一技术优化你的项目。
|
1月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
54 0
|
1月前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
40 0
|
1月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集