OpenCV学习(20) grabcut分割算法

简介: 在OpenCV中,实现了grabcut分割算法,该算法可以方便的分割出前景图像,操作简单,而且分割的效果很好。算法的原理参见papaer:“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts 比如下面的一副图,我们只要选定一个四边形框,把框中的图像作为grabcut的一个输入参数,表示该框中的像素可能属于前景,但框外的部分一定属于背景。

      在OpenCV中,实现了grabcut分割算法,该算法可以方便的分割出前景图像,操作简单,而且分割的效果很好。算法的原理参见papaer:“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts

比如下面的一副图,我们只要选定一个四边形框,把框中的图像作为grabcut的一个输入参数,表示该框中的像素可能属于前景,但框外的部分一定属于背景

imageimage

然后调用grabcut函数,就可以分割出城堡来。具体代码如下:

// 打开另一幅图像
cv::Mat image= cv::imread("../tower.jpg");
if (!image.data)
{
cout<<"不能打开图像!"<<endl;
return 0;
}

// 矩形外的像素是背景
cv::Rect rectangle(50,70,image.cols-150,image.rows-180);

cv::Mat result;
//两个临时矩阵变量,作为算法的中间变量使用,不用care
cv::Mat bgModel,fgModel;
double tt = cv::getTickCount();
// GrabCut 分段
cv::grabCut(image, //输入图像
result, //分段结果
rectangle,// 包含前景的矩形
bgModel,fgModel, // 前景、背景
1, // 迭代次数
cv::GC_INIT_WITH_RECT); // 用矩形
tt = cv::getTickCount() - tt;
printf("算法执行执行时间:%g ms\n", tt/cv::getTickFrequency()*1000);
// 得到可能是前景的像素
//比较函数保留值为GC_PR_FGD的像素
cv::compare(result,cv::GC_PR_FGD,result,cv::CMP_EQ);
// 产生输出图像
cv::Mat foreground(image.size(),CV_8UC3,cv::Scalar(255,255,255));
//背景值为 GC_BGD=0,作为掩码
image.copyTo(foreground,result);

grabCut函数的第一个参数为我们要处理的图像,本程序中就是image,图像的类型必须为:CV_8UC3

第二个参数是mask图像,它的大小和image一样,但是它的格式为CV_8UC1,只能是单通道的,grabcut算法的结果就保存在该图像中。

前面的代码中,我们并没有对mask图像(result)进行初始化设置,因为第6个参数为cv::GC_INIT_WITH_RECT,它表示算法会根据rectangle的范围,来生成一个初始化的mask图像。

cv::grabCut(image,    //输入图像
    result,   //分段结果
    rectangle, // 包含前景的矩形
    bgModel,fgModel, // 前景、背景
    1,        // 迭代次数
    cv::GC_INIT_WITH_RECT); // 用矩形

mask图像的值只能为下面下面4个值(PR,probably表示可能的):

GC_BGD    = 0,  //背景

GC_FGD    = 1,  //前景
GC_PR_BGD = 2,  //可能背景

GC_PR_FGD = 3   //可能前景

根据rectangle生成的mask图像规则为:四边形外面的部分一定是背景,所以在mask图中对应的像素值为GC_BGD,而四边形内部的的值可能为前景,所以对应的像素值为GC_PR_FGD。所以我们程序中使用mask图像应该如下图所示。


image

如果第7个参数为GC_INIT_WITH_MASK,这时第三个参数rectangle没有使用,我们必须在调用grabcut函数之前,手工设置mask图像(变量result),如果我们把result设置成上图所示的灰度图。那个调用函数

cv::grabCut(image1,    //输入图像
    result1,   //分段结果
    rectangle, // 包含前景的矩形
    bgModel,fgModel, // 前景、背景
    1,        // 迭代次数
    cv::GC_INIT_WITH_MASK); // 用矩形

可以得到同样的结果。
可以参考下面的代码:

cv::Mat result1= cv::Mat(image1.rows, image1.cols,CV_8UC1, cv::Scalar(cv::GC_BGD));
//注意给子矩阵赋值的方法
cv::Mat roi(result1, cv::Rect(50,70,result1.cols-150,result.rows-180));
roi = cv::Scalar(cv::GC_PR_FGD);
tt = cv::getTickCount();
// GrabCut 分段
cv::grabCut(image1, //输入图像
result1, //分段结果
rectangle,// 包含前景的矩形
bgModel,fgModel, // 前景、背景
1, // 迭代次数
cv::GC_INIT_WITH_MASK); // 用矩形
tt = cv::getTickCount() - tt;
printf("算法执行执行时间:%g ms\n", tt/cv::getTickFrequency()*1000);

// 得到可能是前景的像素
//比较函数保留值为GC_PR_FGD的像素
cv::compare(result1,cv::GC_PR_FGD,result,cv::CMP_EQ);
// 产生输出图像
cv::Mat foreground1(image1.size(),CV_8UC3,cv::Scalar(255,255,255));
//背景值为 GC_BGD=0,作为掩码
image.copyTo(foreground1,result1);

第3个参数是rectangle的大小位置,如果第7个参数为GC_INIT_WITH_MASK,则该参数没有作用。

第4,5个参数是两个算法在执行过程中使用临时矩阵变量,不用care它们的内容。

第6个参数是迭代次数,迭代越多,效果越好,但划时间也越长。

第7个参数是操作模式,通常情况下为GC_INIT_WITH_RECT和GC_INIT_WITH_MASK。

从上面的图中,我们可以看到,grabcut算法的效果很好,但是花的时间也很长,上面图像在我的笔记本上需要4.4秒。

image

程序源代码:工程FirstOpenCV13

相关文章
|
24天前
|
Rust Dart 算法
55.3k star!开源算法教程,附带动画图解,学习算法不再苦恼!
55.3k star!开源算法教程,附带动画图解,学习算法不再苦恼!
|
25天前
|
算法 C++ 计算机视觉
Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法
Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法
|
25天前
|
算法 计算机视觉 C++
Opencv(C++)学习系列---Sobel索贝尔算子边缘检测
Opencv(C++)学习系列---Sobel索贝尔算子边缘检测
|
25天前
|
算法 C++ 计算机视觉
Opencv(C++)学习系列---Canny边缘检测算法
Opencv(C++)学习系列---Canny边缘检测算法
|
2月前
|
监控 API 计算机视觉
OpenCV这么简单为啥不学——1.3、图像缩放resize函数
OpenCV这么简单为啥不学——1.3、图像缩放resize函数
39 0
|
3月前
|
监控 算法 开发工具
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现获取图像并对图像进行边缘检测(C#)
Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现获取图像并对图像进行边缘检测(C#)
41 1
|
1月前
|
计算机视觉
OpenCV(三十):图像膨胀
OpenCV(三十):图像膨胀
20 0
|
1月前
|
计算机视觉
OpenCV(二十九):图像腐蚀
OpenCV(二十九):图像腐蚀
24 0
|
1月前
|
计算机视觉
OpenCV(二十七):图像距离变换
OpenCV(二十七):图像距离变换
19 0
|
1月前
|
计算机视觉 Python
OpenCV 4基础篇| OpenCV图像的拆分和合并
OpenCV 4基础篇| OpenCV图像的拆分和合并