Opencv实用笔记(一): 获取并绘制JSON标注文件目标区域(可单独保存目标小图)

简介: 本文介绍了如何使用OpenCV和Python根据JSON标注文件获取并绘制目标区域,同时可将裁剪的图像单独保存。通过示例代码,展示了如何读取图片路径、解析JSON标注、绘制标注框并保存裁剪图像的过程。此外,还提供了相关的博客链接,供读者进一步学习。

背景

如果我们想要根据json标注文件,获取里面的指定目标的裁剪区域,那么我们可以根据以下代码来实现(也可以校验标注情况)。

代码

from tqdm import tqdm
import os, json, cv2, copy
import numpy as np

def get_all_images(path, flags):
    result_list, filenames = [], []
    for root, dirs, files in os.walk(path):
        for file in files:
            filename, file_extension = os.path.splitext(file)
            if file_extension.lower() in flags:
                result_list.append(os.path.join(root, file))
                filenames.append(file)
    return result_list, filenames

def get_labelme_info(label_file, target):
    anno = json.load(open(label_file, "r", encoding="utf-8"))
    shapes = anno['shapes']
    image_path = os.path.basename(anno['imagePath'])
    labels = []
    boxes = []
    for s in shapes:
        pts = s['points']
        x1, y1 = pts[0]
        x2, y2 = pts[1]
        label = s['label']
        if label in target:
            labels.append(label)
            boxes.append([x1, y1, x2, y2])
    return image_path, boxes, labels

def plot_one_ori(image, boxs, label, color, mask_alpha=0.4):
    [x1, y1, x2, y2] = boxs
    mask_img = copy.deepcopy(image) # 1
    ori_img = copy.deepcopy(mask_img) # 1
    cropped_image = ori_img[y1:y2, x1:x2]
    img_height, img_width = image.shape[:2]
    size = min([img_height, img_width]) * 0.0006
    text_thickness = int(min([img_height, img_width]) * 0.001)
    cv2.rectangle(image, (x1, y1), (x2, y2), color, 3)
    caption = f'{"原标签-"}{label}'
    (tw, th), _ = cv2.getTextSize(text=caption, fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                                fontScale=size, thickness=text_thickness)
    th = int(th * 1.2)
    cv2.rectangle(image, (x1, y2),
                (x1 + tw, y2 + th), color, -1)
    cv2.rectangle(mask_img, (x1, y2),
                (x1 + tw, y2 + th), color, -1)
    cv2.putText(image, caption, (x1, y2 + th), cv2.FONT_HERSHEY_SIMPLEX, size, (255, 255, 255), text_thickness, cv2.LINE_AA)
    cv2.putText(mask_img, caption, (x1, y2 + th), cv2.FONT_HERSHEY_SIMPLEX, size, (255, 255, 255), text_thickness, cv2.LINE_AA)
    image = cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)
    return image, cropped_image

def cv_imread(filePath):
    cv_img = cv2.imdecode(np.fromfile(filePath, dtype=np.uint8), flags=cv2.IMREAD_COLOR)
    return cv_img

if __name__ == "__main__":
    img_folder = r"\\DSJ_NAS_90*******" # 原图和JSON文件位置
    save_target_path = r"\\DSJ_NA************" # 保存位置
    target = ["red_face"] # 获取指定目标,可传多个
    os.makedirs(save_target_path, exist_ok=True)
    img_list, filenames = get_all_images(img_folder, flags=[".jpg", ".png", ".jpeg"])
    print(filenames)
    for filename in filenames:
        fn, file_extension = os.path.splitext(filename)
        image_path = os.path.join(img_folder, filename)  # 图片名
        json_path = os.path.join(img_folder, "{}.json".format(fn))  # 标签文件名
        save_path = os.path.join(save_target_path, "{}.jpg".format(fn))
        _, ori_boxes, ori_labels = get_labelme_info(json_path, target)
        for box, label in zip(ori_boxes, ori_labels):
            x1, y1, x2, y2 = list(map(int, box))
            image = cv_imread(image_path)
            image, crop_image = plot_one_ori(image, [x1, y1, x2, y2], label, color=(0,0,255))
            # cv2.imshow("1",crop_image)
            # cv2.waitKey(1)
            cv2.imencode('.jpg', crop_image)[1].tofile(save_path)
目录
相关文章
|
2月前
|
XML JSON API
如何在 Postman 中上传文件和 JSON 数据
如果你想在 Postman 中同时上传文件和 JSON 数据,本文将带你一步一步地了解整个过程,包括最佳实践和技巧,让你的工作更轻松。
|
8月前
|
JSON 算法 vr&ar
目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等
本文介绍了如何使用COCO评估器通过Detectron2库对目标检测模型进行性能评估,生成coco_instances_results.json文件,并利用pycocotools解析该文件以计算AP、AR、MR和DR等关键指标。
553 1
目标检测笔记(五):查看通过COCOEvaluator生成的coco_instances_results.json文件的详细检测信息,包含AP、AR、MR和DR等
|
4月前
|
开发工具 git 索引
怎么取消对project.private.config.json这个文件的git记录
通过以上步骤,您可以成功取消对 `project.private.config.json`文件的Git记录。这样,文件将不会被包含在未来的提交中,同时仍保留在您的工作区中。
121 28
|
8月前
|
机器学习/深度学习 计算机视觉
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
本文介绍了如何使用OpenCV进行特定区域的目标检测,包括人脸检测实例,展示了两种实现方法和相应的代码。
240 1
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
|
8月前
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
146 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
8月前
|
Serverless 计算机视觉
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
这篇文章介绍了如何使用OpenCV库通过mask图像绘制分割对象的外接椭圆。首先,需要加载mask图像,然后使用`cv2.findContours()`寻找轮廓,接着用`cv2.fitEllipse()`拟合外接椭圆,最后用`cv2.ellipse()`绘制椭圆。文章提供了详细的代码示例,展示了从读取图像到显示结果的完整过程。
156 0
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
|
1月前
|
SQL JSON 数据格式
SPL 处理多层 JSON 数据比 DuckDB 方便多了
esProc SPL 处理多层 JSON 数据比 DuckDB 更便捷,尤其在保留 JSON 层次与复杂计算时优势明显。DuckDB 虽能通过 `read_json_auto()` 将 JSON 解析为表格结构,但面对深层次或复杂运算时,SQL 需频繁使用 UNNEST、子查询等结构,逻辑易变得繁琐。而 SPL 以集合运算方式直接处理子表,代码更简洁直观,无需复杂关联或 Lambda 语法,同时保持 JSON 原始结构。esProc SPL 开源免费,适合复杂 JSON 场景,欢迎至乾学院探索!
|
3月前
|
XML JSON API
淘宝商品详情API的调用流程(python请求示例以及json数据示例返回参考)
JSON数据示例:需要提供一个结构化的示例,展示商品详情可能包含的字段,如商品标题、价格、库存、描述、图片链接、卖家信息等。考虑到稳定性,示例应基于淘宝开放平台的标准响应格式。
|
3月前
|
JSON Java 数据格式
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——封装统一返回的数据结构
本文介绍了在Spring Boot中封装统一返回的数据结构的方法。通过定义一个泛型类`JsonResult<T>`,包含数据、状态码和提示信息三个属性,满足不同场景下的JSON返回需求。例如,无数据返回时可设置默认状态码"0"和消息"操作成功!",有数据返回时也可自定义状态码和消息。同时,文章展示了如何在Controller中使用该结构,通过具体示例(如用户信息、列表和Map)说明其灵活性与便捷性。最后总结了Spring Boot中JSON数据返回的配置与实际项目中的应用技巧。
195 0
|
3月前
|
JSON Java fastjson
微服务——SpringBoot使用归纳——Spring Boot返回Json数据及数据封装——使用 fastJson 处理 null
本文介绍如何使用 fastJson 处理 null 值。与 Jackson 不同,fastJson 需要通过继承 `WebMvcConfigurationSupport` 类并覆盖 `configureMessageConverters` 方法来配置 null 值的处理方式。例如,可将 String 类型的 null 转为 "",Number 类型的 null 转为 0,避免循环引用等。代码示例展示了具体实现步骤,包括引入相关依赖、设置序列化特性及解决中文乱码问题。
88 0