(转) 干货 | 图解LSTM神经网络架构及其11种变体(附论文)

简介: 干货 | 图解LSTM神经网络架构及其11种变体(附论文) 2016-10-02 机器之心   选自FastML 作者:Zygmunt Z. 机器之心编译  参与:老红、李亚洲   就像雨季后非洲大草原许多野生溪流分化成的湖泊和水洼,深度学习已经分化成了各种不同的专门架构。

干货 | 图解LSTM神经网络架构及其11种变体(附论文)

2016-10-02 机器之心

 

选自FastML

作者:Zygmunt Z.

机器之心编译 

参与:老红、李亚洲

 

就像雨季后非洲大草原许多野生溪流分化成的湖泊和水洼,深度学习已经分化成了各种不同的专门架构。

 

并且,每个架构都会有一个图解,这里将详细介绍它们。

 

神经网络在概念上很简单,并且它们十分动人。在层级上,有着一堆同质化的元素和统一的单位,并且它们之间还存在在一系列的加权连接。这就是神经网络的所有,至少从理论上来说是这样。然而,时间证明的结果却有所不同。并非工程的特性,我们现在拥有的是建筑工程,而非工程的特性,正如 Stephen Merrity 描述的那样:

 

深度学习的浪漫主义描述通常预示着手工制作工程特性的日子一去不复返了,这个模型的本身是足以先进到能够解决问题的。正如大多数广告一样,它同时具备真实性和误导性。

 

虽然深度学习在很多情况下简化了工程特性,但它肯定还没有彻底地摆脱它。随着工程特性的减少,机器学习模型本身的结构变得越来越复杂。大多数时候,这些模型架构会特定于一个给定的任务,就像过去的工程特性那样。

 

需要澄清一下的是,这仍然是很重要的一步。结构工程要比工程特性更具一般性,并且提供了许多新的机会。正如我们提到的,我们不能无视这样一个事实:我们离我们想要达到的还很远。

 

LSTM 图解

 

怎样解释这些架构?自然地,我们可以通过图解,图解往往可以让阐述变得更清晰。

 

让我们先来看看如今最流行的两种网络,CNN 和 LSTM:

 

 

很简单吧,我们再更仔细地研究下:

 

 

正如大家所言,你可能有很多不理解的数学问题,但你会慢慢习惯它们。幸运地是,我们有很多非常好的解释。

 

仍觉得 LSTM 太复杂了?那让我们来试试简单的版本,GRU (Gated Recurrent Unit),相当琐碎。

 

 

尤其是这一个,被称为 minimal GRU:

 

 

更多图解

 

LSTM 个多各样的变体如今很常见。下面就是一个,我们称之为深度双向 LSTM:

 

DB-LSTM(参见论文:End-to-end Learning of Semantic Role Labeling Using Recurrent Neural Networks )

 

 

剩下的也不需要加以过多说明。让我们从 CNN 和 LSTM 的结合开始说起:

 

卷积残差记忆网络(参见论文:Convolutional Residual Memory Networks)

 

 

动态 NTM(参见论文:Dynamic Neural Turing Machine with Soft and Hard Addressing Schemes)

 

 

可发展神经图灵机(参见论文:Evolving Neural Turing Machines for Reward-based Learning)

 

视觉注意的循环模型(参见论文:Recurrent Models of Visual Attention)

 

通过反向传播无监督域适应(参见论文:Unsupervised Domain Adaptation by Backpropagation)

 

进行图像超分辨率的深度递归 CNN(参见论文:Deeply-Recursive Convolutional Network for Image Super-Resolution)

 

带有合成梯度的多层感知器的图解在清晰度上得分很高:

 

带有合成梯度的 MLP(参见论文:Decoupled Neural Interfaces using Synthetic Gradients)

 

每天都有新的成果出现,下面这个就是新鲜的,来自谷歌的神经机器翻译系统

 

 

一些完全不同的东西

 

Neural Network ZOO(一篇描述神经网络架构的文章,机器之心同样进行了编译) 的描绘非常简单,但很多都华而不实,例如:ESM, ESN 和 ELM。

 

 

它们看上去像没有完全连接的感知器,它们看上去像没有完全连接的感知器,但它们应该代表的是一种液体状态机、一个回声状态网络和一个极端学习机。

 

LSM 和 ESN 有何不同?很简单,LSM 有着三角状绿色的神经元。而 ESN 和 ELM 又有什么不同呢?它们都有蓝色的神经元。

 

讲真,虽然类似,,ESN 是一个递归网络而 ELM 则不是。而这种区别也可在架构图中见到。

 

 
相关文章
|
3月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
87 3
|
1月前
|
NoSQL 关系型数据库 MySQL
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
174 56
《docker高级篇(大厂进阶):4.Docker网络》包括:是什么、常用基本命令、能干嘛、网络模式、docker平台架构图解
|
10天前
|
机器学习/深度学习 编解码 vr&ar
NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构
本文详细解读NeurIPS 2024最佳论文《视觉自回归建模:基于下一尺度预测的可扩展图像生成》。该研究提出VAR模型,通过多尺度token图和VAR Transformer结构,实现高效、高质量的图像生成,解决了传统自回归模型在二维结构信息、泛化能力和计算效率上的局限。实验表明,VAR在图像质量和速度上超越现有扩散模型,并展示出良好的扩展性和零样本泛化能力。未来研究将聚焦于文本引导生成和视频生成等方向。
57 8
NeurIPS 2024最佳论文,扩散模型的创新替代:基于多尺度预测的视觉自回归架构
|
4天前
|
负载均衡 芯片 异构计算
NSDI'24 | 阿里云飞天洛神云网络论文解读——《LuoShen》揭秘新型融合网关 洛神云网关
NSDI‘24于4月16-18日在美国圣塔克拉拉市举办,阿里云飞天洛神云网络首次中稿NSDI,两篇论文入选。其中《LuoShen: A Hyper-Converged Programmable Gateway for Multi-Tenant Multi-Service Edge Clouds》提出超融合网关LuoShen,基于Tofino、FPGA和CPU的新型硬件形态,将公有云VPC设施部署到边缘机柜中,实现小型化、低成本和高性能。该方案使成本降低75%,空间占用减少87%,并提供1.2Tbps吞吐量,展示了强大的技术竞争力。
|
10天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
3天前
|
SQL Cloud Native API
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI‘24于4月16-18日在美国加州圣塔克拉拉市举办,汇聚全球网络系统领域的专家。阿里云飞天洛神云网络的两篇论文入选,标志着其创新能力获广泛认可。其中,《Poseidon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree》介绍了波塞冬平台,该平台通过统一控制器架构、高性能配置计算引擎等技术,实现了对超大规模租户和设备的高效管理,显著提升了云网络性能与弹性。实验结果显示,波塞冬在启用EIP时的完成时间比Top 5厂商分别快1.8至55倍和2.6至4.8倍。
|
16天前
|
容灾 网络协议 数据库
云卓越架构:云上网络稳定性建设和应用稳定性治理最佳实践
本文介绍了云上网络稳定性体系建设的关键内容,包括面向失败的架构设计、可观测性与应急恢复、客户案例及阿里巴巴的核心电商架构演进。首先强调了网络稳定性的挑战及其应对策略,如责任共担模型和冗余设计。接着详细探讨了多可用区部署、弹性架构规划及跨地域容灾设计的最佳实践,特别是阿里云的产品和技术如何助力实现高可用性和快速故障恢复。最后通过具体案例展示了秒级故障转移的效果,以及同城多活架构下的实际应用。这些措施共同确保了业务在面对网络故障时的持续稳定运行。
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
124 3
图卷积网络入门:数学基础与架构设计
|
2月前
|
网络协议 数据挖掘 5G
适用于金融和交易应用的低延迟网络:技术、架构与应用
适用于金融和交易应用的低延迟网络:技术、架构与应用
90 5
|
3月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
56 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》

热门文章

最新文章