深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战

简介: 深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战

循环神经网络(Recurrent Neural Networks,简称RNNs)是一类用于处理序列数据的神经网络。与传统的神经网络(如全连接神经网络或卷积神经网络)不同,RNNs具有记忆能力,能够捕获序列数据中的时间依赖性和模式。这使得RNNs在自然语言处理、语音识别、时间序列预测等领域具有广泛的应用。

一、RNNs的基本结构

RNNs的基本结构包括输入层、隐藏层和输出层。其中,隐藏层是RNNs的核心部分,它通过循环的方式连接,使得每个时间步的隐藏层都能接收上一时间步的隐藏层状态作为输入。这种结构使得RNNs能够捕获序列数据中的时间依赖性。

二、RNNs的工作原理

  1. 输入层:接收当前时间步的输入数据(如一个单词、一个时间点的观测值等)。
  2. 隐藏层:根据当前时间步的输入数据和上一时间步的隐藏层状态,计算当前时间步的隐藏层状态。这个状态包含了从序列开始到当前时间步的所有信息。隐藏层状态的计算通常使用非线性激活函数(如tanh或ReLU)进行。
  3. 输出层:根据当前时间步的隐藏层状态,计算当前时间步的输出。输出层可以是一个简单的全连接层,也可以是更复杂的结构(如softmax层用于分类任务)。
  4. 循环连接:隐藏层的状态通过循环连接传递给下一个时间步的隐藏层。这种循环连接使得RNNs能够捕获序列数据中的时间依赖性。

三、RNNs的变种

由于RNNs在处理长序列时存在梯度消失和梯度爆炸的问题,研究者们提出了许多RNNs的变种来改进这些问题,包括:

  1. 长短期记忆网络(Long Short-Term Memory,LSTM):通过引入门控机制(如输入门、遗忘门和输出门)来控制信息的传递和遗忘,从而有效地解决了梯度消失和梯度爆炸的问题。
  2. 门控循环单元(Gated Recurrent Unit,GRU):GRU是LSTM的一种简化版本,它合并了LSTM中的遗忘门和输入门,使得模型结构更加简单,但性能与LSTM相当。
  3. 双向循环神经网络(Bidirectional RNNs):双向RNNs同时考虑序列的前向和后向信息,从而能够捕获更丰富的上下文信息。

四、RNNs的应用

RNNs在自然语言处理、语音识别、时间序列预测等领域具有广泛的应用。例如,在机器翻译任务中,RNNs可以将一种语言的句子编码为向量表示,然后解码为另一种语言的句子;在语音识别任务中,RNNs可以将音频信号转换为文本序列;在时间序列预测任务中,RNNs可以利用历史数据来预测未来的趋势。

案例代码实现:

模型训练:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.layers import Dense,LSTM
import keras
 
#解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
 
#加载数据
dataset = pd.read_csv("LBMA-GOLD.csv",index_col=[0])   #将第一列作为索引列和标题列
#print(dataset)
 
#设置训练集的长度
training_len = 1056
 
#获取训练集
training_set = dataset.iloc[0:training_len, [0]]
 
#获取测试集数据
test_set = dataset.iloc[training_len:, [0]]
#print(test_set)
#对数据集进行归一化
sc = MinMaxScaler(feature_range=(0,1))
train_set_scaled = sc.fit_transform(training_set)
test_set = sc.fit_transform(test_set)
 
#设置训练集特征和训练集标签
x_train = []
y_train = []
 
#设置测试集特征和训练集标签
x_test = []
y_test = []
 
#利用for循环进行训练集特征和标签的制作,提取数据中连练五天作为特征
for i in range(5,len(train_set_scaled)):
    x_train.append(train_set_scaled[i-5:i,0])
    y_train.append(train_set_scaled[i,0])
 
#将训练集用list转换为array格式
x_train,y_train = np.array(x_train),np.array(y_train)
 
# 使x_train符合输入要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]。
# 此处整个数据集送入,送入样本数为x_train.shape[0]即训练数据的样本个数; 循环核时间展开步数定位5
x_train = np.reshape(x_train,(x_train.shape[0],5,1))
 
#print(x_train.shape)
 
# 同理划分测试集数据
for i in range(5, len(test_set)):
    x_test.append(test_set[i - 5:i, 0])
    y_test.append(test_set[i, 0])
 
 
# 测试集变array并reshape为符合要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]
x_test, y_test = np.array(x_test), np.array(y_test)
x_test = np.reshape(x_test, (x_test.shape[0], 5, 1))
 
#print(x_test.shape)
 
 
# # 搭建神经网络模型
model = keras.Sequential()
model.add(LSTM(80, return_sequences=True, activation="relu"))
model.add(LSTM(100, return_sequences=False, activation="relu"))
model.add(Dense(10, activation="relu"))
model.add(Dense(1))
 
 
# 对模型进行编译,选用学习率为0.01
model.compile(loss='mse', optimizer=keras.optimizers.Adam(0.01))
 
# 将训练集和测试集放入网络进行训练,每批次送入的数据为32个数据,一共训练50轮,将测试集样本放入到神经网络中测试其验证集的loss值
history = model.fit(x_train, y_train, batch_size=32, epochs=100, validation_data=(x_test, y_test))
model.save('model.h5')
 
 
 
# 绘制训练集和测试集的loss值对比图
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='val')
plt.title("LSTM神经网络loss值")
plt.legend()
plt.show()

数据测试:

# 导入库
import pandas as pd
import numpy as np
import matplotlib.pyplot
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from math import sqrt
from keras.models import load_model
import matplotlib.pyplot as plt
 
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
 
# 加载历史数据文件
dataset = pd.read_csv('LBMA-GOLD.csv', index_col='Date')
# print(dataset)
 
# 设置训练集的长度
training_len = 1256 -200
 
 
# 获取测试集数据
test_set = dataset.iloc[training_len:, [0]]
 
# 将数据集进行归一化,方便神经网络的训练
sc = MinMaxScaler(feature_range=(0, 1))
test_set = sc.fit_transform(test_set)
 
 
# 设置放置测试数据特征和测试数据标签的列表
x_test = []
y_test = []
 
 
 
# 同理划分测试集数据
for i in range(5, len(test_set)):
    x_test.append(test_set[i - 5:i, 0])
    y_test.append(test_set[i, 0])
 
 
# 测试集变array并reshape为符合要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]
x_test, y_test = np.array(x_test), np.array(y_test)
x_test = np.reshape(x_test, (x_test.shape[0], 5, 1))
 
# 导入模型
model = load_model('model.h5')
 
 
# 利用模型进行测试
predicted = model.predict(x_test)
# print(predicted.shape)
 
# 进行预测值的反归一化
prediction = sc.inverse_transform(predicted)
# print(prediction)
 
# 对测试集的标签进行反归一化
 
real = sc.inverse_transform(test_set[5:])
# print(real)
 
 
# 打印模型的评价指标
rmse = sqrt(mean_squared_error(prediction, real))
mape = np.mean(np.abs((real-prediction)/prediction))
print('rmse', rmse)
print('mape', mape)
 
# 绘制真实值和预测值的对比
plt.plot(real, label='真实值')
plt.plot(prediction, label='预测值')
plt.title("基于LSTM神经网络的黄金价格预测")
plt.legend()
plt.show()

预测结果:

五,相关作品展示

基于Java开发、Python开发、PHP开发、C#开发等相关语言开发的实战项目

基于Nodejs、Vue等前端技术开发的前端实战项目

基于微信小程序和安卓APP应用开发的相关作品

基于51单片机等嵌入式物联网开发应用

基于各类算法实现的AI智能应用

基于大数据实现的各类数据管理和推荐系统

相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
27 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:深度学习与神经网络的融合
【7月更文挑战第11天】随着科技的不断进步,人工智能(AI)领域正迎来前所未有的发展机遇。本文将深入探讨深度学习和神经网络这两大技术如何相互融合,共同推动AI的未来走向。我们将从基础概念出发,逐步解析它们在实际应用中的协同效应,并预测未来可能的发展趋势。
|
17天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:图神经网络(GNN)
使用Python实现深度学习模型:图神经网络(GNN)
32 1
|
4天前
|
机器学习/深度学习 数据采集 数据挖掘
Python实现循环神经网络RNN-LSTM回归模型项目实战(股票价格预测)
Python实现循环神经网络RNN-LSTM回归模型项目实战(股票价格预测)
|
8天前
|
机器学习/深度学习 人工智能 计算机视觉
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
|
8天前
|
机器学习/深度学习 物联网 区块链
未来触手可及:探索区块链、物联网和虚拟现实的革新之路探索深度学习中的卷积神经网络(CNN)
随着科技的飞速发展,新兴技术如区块链、物联网(IoT)和虚拟现实(VR)正不断重塑我们的工作和生活方式。本文将深入探讨这些技术的最新发展趋势,分析它们如何在不同行业实现应用革新,并预测其未来的融合潜力。我们将从技术的基本原理出发,通过案例研究,揭示它们在现实世界中的创新应用场景,并讨论面临的挑战与机遇。 在机器学习领域,卷积神经网络(CNN)已成为图像识别和处理的基石。本文深入探讨了CNN的核心原理、架构以及在多个领域的应用实例,旨在为读者提供从理论到实践的全面理解。
|
8天前
|
机器学习/深度学习 传感器 人工智能
探索人工智能的未来:深度学习与神经网络的融合
本文旨在探讨人工智能领域的最新趋势,特别是深度学习和神经网络如何相互融合,推动技术革新。我们将通过具体的案例分析,展示这些技术在现实世界中的应用,并讨论其对社会的潜在影响。文章将提供对当前研究进展的深入理解,以及对未来发展的预测。
18 0
|
12天前
|
机器学习/深度学习 自然语言处理 算法
深度学习中的自适应神经网络:理论与应用
【7月更文挑战第1天】本文旨在探究自适应神经网络在深度学习领域的理论基础及其在多个应用场景中的实际效能。通过分析自适应机制如何优化网络结构,提高学习效率和模型泛化能力,我们进一步讨论了自适应神经网络面临的主要挑战及未来发展方向。
|
2月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
21天前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。