物体检测算法 SSD 的训练和测试

简介: 物体检测算法 SSD 的训练和测试  GitHub:https://github.com/stoneyang/caffe_ssd Paper: https://arxiv.org/abs/1512.

物体检测算法 SSD 的训练和测试 

 

GitHub:https://github.com/stoneyang/caffe_ssd 

Paper: https://arxiv.org/abs/1512.02325 

 

1. 安装 caffe_SSD:

git clone https://github.com/weiliu89/caffe.git  
cd caffe 
git checkout ssd 

2. 编译该 caffe 文件,在主目录下:

# Modify Makefile.config according to your Caffe installation.
cp Makefile.config.example Makefile.config
make -j24
# Make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
make pycaffe  
# Then, you need to export your Python path into the environment. This Step is important, it may shown you error, if you skip this operation.
export PYTHONPATH=/home/wangxiao/Documents/caffe/python:$PYTHONPATH 

但是,事情总是没那么顺利啊,不然你也不会在这里看我瞎bb了。
编译过程中,会遇到这个bug:json_parser_read.hpp:257:264: error: ‘type name’ declared as function returning an array escape 
然后,你想继续玩这个SSD,就得执行如下操作,以继续编译该caffe文件:

  修改json_parser_read.hpp:打开文件夹Document,选中computer,在搜索json_parser_read.hpp,找到该文件的路径之后用如下命令打开

  sudo gedit /usr/include/boost/property_tree/detail/json_parser_read.hpp

  将257行开始的escape代码段注释掉即可,如下:

/*escape
                    =   chset_p(detail::widen<Ch>("\"\\/bfnrt").c_str())
                            [typename Context::a_escape(self.c)] | 'u' >> uint_parser<unsigned long, 16, 4, 4>() [typename Context::a_unicode(self.c)] ;*/
 

3. 编译完成后,开始下载作者使用的 在 ImageNet 上预训练好的 VGG-16 模型:

  Download fully convolutional reduced (atrous) VGGNet. By default, we assume the model is stored in $CAFFE_ROOT/models/VGGNet/ 

4. 下载训练测试用的数据集:Pascal VOC 2007 2012: 

# Download the data.
cd $HOME/data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
# Extract the data. tar -xvf VOCtrainval_11-May-2012.tar tar -xvf VOCtrainval_06-Nov-2007.tar tar -xvf VOCtest_06-Nov-2007.tar 

 

5. 将这些文件打包处理,生成 lmdb 文件:

./data/VOC0712/create_list.sh
./data/VOC0712/create_data.sh 

6. 数据集处理完毕后,我们就可以修改相关的参数以及路径等,使得在我们自己的机器上可以爽快的运行:

  vim /examples/ssd/ssd_pascal.py 

  主要包括:

  1. 训练数据集 lmdb 的路径:

  2. 测试数据集 lmdb 的路径:

  3. gpus=”0,1,2,3” ===> 改为”0”  

  4. batchsize = 32 ==>> 改为 20 比较好,因为有可能会显存溢出;

 

7. 将以上几点都注意到,应该不会再出问题的了,目测我的已经训练到第 360 次迭代了。。。

 

以上就是 SSD的训练部分。

Reference:

1. http://blog.csdn.net/tfy1028/article/details/53289106 

2. http://blog.csdn.net/zhang_shuai12/article/details/52346878 

 

相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
182 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
3月前
|
数据采集 机器学习/深度学习 大数据
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
这篇文章详细介绍了C3D架构在行为检测领域的应用,包括训练和测试步骤,使用UCF101数据集进行演示。
87 1
行为检测代码(一):超详细介绍C3D架构训练+测试步骤
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
3月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
3855 1
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
3月前
|
PyTorch 算法框架/工具 计算机视觉
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
本文介绍了使用YOLOv4-Tiny进行目标检测的完整流程,包括模型介绍、代码下载、数据集处理、网络训练、预测和评估。
204 2
目标检测实战(二):YoloV4-Tiny训练、测试、评估完整步骤
|
3月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
134 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
2月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
3月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
677 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
3月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
83 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
3月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
195 0